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Abstract

The task of inferring a set of classes and class
descriptions most likely to explain a given
data set can be placed on a firm theoretical
foundation using Bayesian statistics. Within
this framework, and using various mathemat-
ical and algorithmic approximations, the Au-
toClass system searches for the most proba-
ble classifications, automatically choosing the
number of classes and complexity of class de-
scriptions. A simpler version of AutoClass has
been applied to many large real data sets, have
discovered new independently-verified phenom-
ena, and have been released as a robust soft-
ware package. Recent extensions allow at-
tributes to be selectively correlated within par-
ticular classes, and allow classes to inherit, or
share, model parameters though a class hierar-
chy. In this paper we summarize the mathe-
matical foundations of Autoclass.

1 Introduction

The task of supervised classification - i.e., learning to pre-
dict class memberships of test cases given labeled train-
ing cases - is a familiar machine learning problem. A re-
lated problem is unsupervised classification, where train-
ing cases are also unlabeled. Here one tries to predict all
features of new cases; the best classification is the least
“surprised” by new cases. This type of classification,
related to clustering, is often very useful in exploratory
data analysis, where one has few preconceptions about
what structures new data may hold.
We have previously developed and reported on Au-

toClass [Cheeseman et al., 1988a; Cheeseman et al.,
1988b], an unsupervised classification system based on
Bayesian theory. Rather than just partitioning cases,
as most clustering techniques do, the Bayesian approach
searches in a model space for the “best” class descrip-
tions. A best classification optimally trades off predic-
tive accuracy against the complexity of the classes, and
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so does not “overfit” the data. Such classes are also
“fuzzy”; instead of each case being assigned to a class, a
case has a probability of being a member of each of the
different classes.
Autoclass III, the most recent released version, com-

bines real and discrete data, allows some data to be miss-
ing, and automatically chooses the number of classes
from first principles. Extensive testing has indicated
that it generally produces significant and useful results,
but is primarily limited by the simplicity of the mod-
els it uses, rather than, for example, inadequate search
heuristics. AutoClass III assumes that all attributes are
relevant, that they are independent of each other within
each class, and that classes are mutually exclusive. Re-
cent extensions, embodied in Autoclass IV, let us relax
two of these assumptions, allowing attributes to be se-
lectively correlated and to have more or less relevance
via a class hierarchy.
This paper summarizes the mathematical foundations

of AutoClass, beginning with the Bayesian theory of
learning, and then applying it to increasingly complex
classification problems, from various single class mod-
els up to hierarchical class mixtures. For each problem,
we describe our assumptions in words and mathematics,
and then give the resulting evaluation and estimation
functions for comparing models and making predictions.
The derivations of these results from these assumptions,
however, are not given.

2 Bayesian Learning

Bayesian theory gives a mathematical calculus of degrees
of belief, describing what it means for beliefs to be con-
sistent and how they should change with evidence. This
section briefly reviews that theory, describes an approach
to making it tractable, and comments on the resulting
tradeoffs. In general, a Bayesian agent uses a single real
number to describe its degree of belief in each proposition
of interest. This assumption, together with some other
assumptions about how evidence should affect beliefs,
leads to the standard probability axioms. This result
was originally proved by Cox [Cox, 1946] and has been
reformulated for an AI audience [Heckerman, 1990]. We
now describe this theory.



2.1 Theory

Let E denote some evidence that is known or could po-
tentially be known to an agent; let H denote a hypothe-
sis specifying that the world is in some particular state;
and let the sets of possible evidence E and possible states
of the world H each be mutually exclusive and exhaus-
tive sets. For example, if we had a coin that might be
two-headed the possible states of the world might be
”ordinary coin”, ”two-headed coin”. If we were to toss
it once the possible evidence would be ”lands heads”,
”lands tails”.
In general, P (ab|cd) denotes a real number describing

an agent’s degree of belief in the conjunction of proposi-
tions a and b, conditional on the assumption that propo-
sitions c and d are true. The propositions on either side
of the conditioning bar ”|” can be arbitrary Boolean ex-
pressions. More specifically, π(H) is a “prior” describing
the agent’s belief in H before, or in the absence of, see-
ing evidence E, π(H |E) is a “posterior” describing the
agent’s belief after observing some particular evidence
E, and L(E|H) is a “likelihood” embodying the agent’s
theory of how likely it would be to see each possible ev-
idence combination E in each possible world H .
To be consistent, beliefs must be non-negative, 0 ≤

P (a|b) ≤ 1, and normalized, so that
∑

H π(H) = 1 and∑
E L(E|H) = 1. That is, the agent is sure that the

world is in some state and that some evidence will be
observed. The likelihood and the prior together give a
“joint” probability J(EH) ≡ L(E|H)π(H) of both E
and H . Normalizing the joint gives Bayes’ rule, which
tells how beliefs should change with evidence;

π(H |E) = J(EH)∑
H J(EH)

=
L(E|H)π(H)∑
H L(E|H)π(H)

.

When the set of possible Hs is continuous, the prior
π(H) becomes a differential dπ(H), and the sums over
H are replaced by integrals. Similarly, continuous Es
have a differential likelihood dL(E|H), though any real
evidence ∆E will have a finite probability ∆L(E|H) ≈
dL(E|H)∆E

dE
.

In theory, all an agent needs to do in any given situ-
ation is to choose a set of states H, an associated like-
lihood function describing what evidence is expected to
be observed in those states, a set of prior expectations
on the states, and then collect some relevant evidence.
Bayes’ rule then specifies the appropriate posterior be-
liefs about the state of the world, which can be used to
answer most questions of interest. An agent can combine
these posterior beliefs with its utility over states U(H),
which says how much it prefers each possible state, to
choose an action A which maximizes its expected utility

EU(A) =
∑
H

U(H)π(H |EA).

2.2 Practice

In practice this theory can be difficult to apply, as the
sums and integrals involved are often mathematically in-

tractable. So one must use approximations. Here is our
approach.
Rather than consider all possible states of the world,

we focus on some smaller space of models, and do all
of our analysis conditional on an assumption S that the
world really is described by one of the models in our
space. As with most modeling, this assumption is almost
certainly false, but it makes the analysis tractable. With
time and effort we can make our models more complex,
expanding our model space in order to reduce the effect
of this simplification.
The parameters which specify a particular model are

split into two sets. First, a set of discrete parameters T
describe the general form of the model, usually by spec-
ifying some functional form for the likelihood function.
For example, T might specify whether two variables are
correlated or not, or how many classes are present in a
classification. Second, free variables in this general form,
such as the magnitude of the correlation or the relative
sizes of the classes, constitute the remaining continuous
model parameters V .
We generally prefer a likelihood1 L(E|V TS) which is

mathematically simple and yet still embodies the kinds
of complexity we believe to be relevant.
Similarly, we prefer a simple prior distribution

dπ(V T |S) over this model space, allowing the result-
ing V integrals, described below, to be at least approx-
imated. A prior that predicts the different parameters
in V independently, through a product of terms for each
different parameter, often helps. We also prefer the prior
to be as broad and uninformative as possible, so our soft-
ware can be used in many different problem contexts,
though in principal we could add specific domain knowl-
edge through an appropriate prior. Finally we prefer a
prior that gives nearly equal weight to different levels
of model complexity, resulting in a “significance test”.
Adding more parameters to a model then induces a cost,
which must be paid for by a significantly better fit to the
data before the more complex model is preferred.
Sometimes the integrable priors are not broad enough,

containing meta-parameters which specify some part of
model space to focus on, even though we have no prior
expectations about where to focus. In these cases we
“cheat” and use simple statistics collected from the evi-
dence we are going to use, to help set these priors2. For
example, see Sections 4.2, 4.5.
The joint can now be written as dJ(EV T |S) =

L(E|V TS) dπ(V T |S) and, for a reasonably-complex
problem, is usually a very rugged distribution in V T ,
with an immense number of sharp peaks distributed
widely over a huge high-dimensional space. Because of
this we despair of directly normalizing the joint, as re-
quired by Bayes’ rule, or of communicating the detailed

1Note that when a variable like V sits in a probability ex-
pression where a proposition should be, it stands for a propo-
sition that the variable has a particular value.

2This is cheating because the prior is supposed to be in-
dependent of evidence.
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shape of the posterior distribution.
Instead we break the continuous V space into regions

R surrounding each sharp peak, and search until we tire
for combinations RT for which the “marginal” joint

M(ERT |S) ≡
∫
V ∈R

dJ(EV T |S)

is as large as possible. The best few such “models” RT
are then reported, even though it is usually almost cer-
tain that more probable models remain to be found.
Each model RT is reported by describing its marginal

joint M(ERT |S), its discrete parameters T , and esti-
mates of typical values of V in the region R, like the
mean estimate of V :

E(V |ERTS) ≡
∫
V ∈R V dJ(EV T |S)
M(ERT |S)

or the V for which dJ(EV T |S) is maximum in R. While
these estimates are not invariant under reparameteriza-
tions of the V space, and hence depend on the syntax
with which the likelihood was expressed, the peak is usu-
ally sharp enough that such differences don’t matter.
Reporting only the best few models is usually justified,

since the models weaker than this are usually many or-
ders of magnitude less probable than the best one. The
main reason for reporting models other than the best is
to show the range of variation in the models, so that one
can judge how different the better, not yet found, models
might be.
The decision to stop searching for better models RT

than the current best can often be made in a principled
way by using estimates of how much longer it would
take to find a better model, and how much better than
model would be. If the fact that a data value is un-
known might be informative, one can model “unknown”
as just another possible (discrete) data value; otherwise
the likelihood for an unknown value is just a sum over
the possible known values.
To make predictions with these resulting models, a

reasonable approximation is to average the answer from
the best few peaks, weighted by the relative marginal
joints. Almost all of the weight is usually in the best
few, justifying the neglect of the rest.

2.3 Tradeoffs

Bayesian theory offers the advantages of being theoret-
ically well-founded and empirically well-tested [Berger,
1985]. It offers a clear procedure whereby one can almost
“turn the crank”, modulo doing integrals and search, to
deal with any new problem. The machinery automati-
cally trades off the complexity of a model against its fit
to the evidence. Background knowledge can be included
in the input, and the output is a flexible mixture of sev-
eral different “answers,” with a clear and well-founded
decision theory [Berger, 1985] to help one use that out-
put.
Disadvantages include being forced to be explicit

about the space of models one is searching in, though

this can be good discipline. One must deal with some
difficult integrals and sums, although there is a huge lit-
erature to help one here. And one must often search
large spaces, though most any technique will have to do
this and the joint probability provides a good local eval-
uation function. Finally, it is not clear how one can take
the computational cost of doing a Bayesian analysis into
account without a crippling infinite regress.
Some often perceived disadvantages of Bayesian anal-

ysis are really not problems in practice. Any ambiguities
in choosing a prior are generally not serious, since the
various possible convenient priors usually do not disagree
strongly within the regions of interest. Bayesian analysis
is not limited to what is traditionally considered “statis-
tical” data, but can be applied to any space of models
about how the world might be. For a general discussion
of these issues, see [Cheeseman, 1990].
We will now illustrate this general approach by apply-

ing it to the problem of unsupervised classification.

3 Model Spaces Overview

3.1 Conceptual Overview

In this paper we deal only with attribute-value, not re-
lational, data.3 For example, medical cases might be
described by medical forms with a standard set of en-
tries or slots. Each slot could be filled only by elements
of some known set of simple values, like numbers, colors,
or blood-types. (In this paper, we will only deal with
real and discrete attributes.)
We would like to explain this data as consisting of a

number of classes, each of which corresponds to a dif-
fering underlying cause for the symptoms described on
the form. For example, different patients might fall into
classes corresponding to the different diseases they suffer
from.
To do a Bayesian analysis of this, we need to make

this vague notion more precise, choosing specific math-
ematical formulas which say how likely any particular
combination of evidence would be. A natural way to do
this is to say that there are a certain number of classes,
that a random patient has a certain probability to come
from each of them, and that the patients are distributed
independently – once we know all about the underlying
classes then learning about one patient doesn’t help us
learn what any other patient will be like.
In addition, we need to describe how each class is dis-

tributed. We need a “single class” model saying how
likely any given evidence is, given that we know what
class the patient comes from. Thus we build the multi-
class model space from some other pre-existing model
space, which can be arbitrarily complex. (In fact, much
of this paper will be spend describing various single class
models.) In general, the more complex each class can be,
the less of a need there is to invoke multiple classes to
explain the variation in the data.

3Nothing in principle prevents a Bayesian analysis of more
complex model spaces that predict relational data.
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The simplest way to build a single-class model is to
predict each attribute independently, i.e., build it from
attribute-specific models. A class has a distribution for
each attribute and, if you know the class of a case, learn-
ing the values of one attribute doesn’t help you predict
the value of any other attributes. For real attributes one
can use a standard normal distribution, characterized
by some specific mean and a variance around that mean.
For discrete attributes one can use the standard multino-
mial distribution, characterized by a specific probability
for each possible discrete value.

Up to this point we have described the model space of
Autoclass III. Autoclass IV goes beyond this by intro-
ducing correlation and inheritance. Correlation is intro-
duced by removing the assumption that attributes are
independent within each class. The simplest way to do
this is to let all real attributes covary, and let all discrete
attributes covary. The standard way for real attributes
to covary is the multivariate normal, which basically says
that there is some other set of attributes one could de-
fine, as linear combinations of the attributes given, which
vary independently according to normal distributions. A
simple way to let discrete attributes covary is to define
one super-attribute whose possible values are all possible
combinations of the values of the attributes given.

If there are many attributes, the above ways to add
correlation introduce a great many parameters in the
models, making them very complex and, under the usual
priors, much less preferable than simpler independent
models. What we really want are simpler models which
only allow partial covariance. About the simplest way
to do this is to say that, for a given class, the attributes
clump together in blocks of inter-related attributes. All
the attributes in a block covary with each other, but not
with the attributes in other blocks. Thus we can build
a block model space from the covariant model spaces.

Even this simpler form of covariance introduces more
parameters that the independent case, and when each
class must have its own set of parameters, multiple
classes are penalized more strongly. Attributes which
are irrelevant to the whole classification, like a medi-
cal patient’s favorite color, can be particularly costly.
To reduce this cost, one can allow classes to share the
specification of parameters associated with some of their
independent blocks. Irrelevant attributes can then be
shared by all classes at a minimum cost.

Rather than allow arbitrary combinations of classes
to share blocks, it is simpler to organize the classes as
leaves of a tree. Each block can be placed at some node
in this tree, to be shared by all the leaves below that
node. In this way different attributes can be explained
at different levels of an abstraction hierarchy. For med-
ical patients the tree might have “viral infections” near
the root, predicting fevers, and some more specific viral
disease near the leaves, predicting more disease specific
symptoms. Irrelevant attributes like favorite-color would
go at the root.

3.2 Notation Summary

For all the models to be considered in this paper, the
evidence E will consist of a set of I cases, an associated
set K of attributes, of size4 K, and case attribute values
Xik, which can include “unknown.” For example, medi-
cal case number 8, described as (age = 23, blood-type =
A, . . .), would have X8,1 = 23, X8,2 = A, etc.
In the next two sections we will describe applications

of Bayesian learning theory to various kinds of mod-
els which could explain this evidence, beginning with
simple model spaces and building more complex spaces
from them. We begin with a single class. First, a sin-
gle attribute is considered, then multiple independent
attributes, then fully covariant attributes, and finally
selective covariance. In the next section we combine
these single classes into class mixtures. Table 1 gives
an overview of the various spaces.
For each space S we will describe the continuous

parameters V , any discrete model parameters T , nor-
malized likelihoods dL(E|V TS), and priors dπ(V T |S).
Most spaces have no discrete parameters T , and only one
region R, allowing us to usually ignore these parameters.
Approximations to the resulting marginals M(ERT |S)
and estimates E(V |ERTS) will be given, but not de-
rived. These will often be given in terms of general func-
tions F , so that they may be reused later on. As ap-
propriate, comments will be made about algorithms and
computational complexity. All of the likelihood func-
tions considered here assume the cases are independent,
i.e.,

L(E|V TS) =
∏
i

L(Ei|V TS)

so we need only give L(Ei|V TS) for each space, where
Ei ≡ {Xi1, Xi2, Xi3, . . . , XiK}.

4 Single Class Models

4.1 Single Discrete Attribute - SD1

A discrete attribute k allows only a finite number of pos-
sible values l ∈ [1, 2, ..., L] for anyXi. “Unknown” is usu-
ally treated here as just another possible value. A set of
independent coin tosses, for example, might have L = 3
with l1 = heads, l2 = tails, and l3 = “unknown”. We
make the assumption SD1 that there is only one discrete
attribute, and that the only parameters are the continu-
ous parameters V = q1 . . . qL consisting of the likelihoods
L(Xi|V SD1) = q(l=Xi) for each possible value l. In the
coin example, q1 = .7 would say that the coin was so
“unbalanced” that it has a 70 percent chance of coming
up heads each time.
There are only L − 1 free parameters since normal-

ization requires
∑

l ql = 1. For this likelihood, all that
matters from the data are the number of cases with each
value5 Il =

∑
i δXil. In the coin example, I1 would be

4Note we use script letters like K for sets, and matching
ordinary letters K to denote their size.

5Note that δuv denotes 1 when u = v and 0 otherwise.
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Space Description V T R Subspaces Compute Time
SD1 Single Discrete ql I

SR1 Single Real µσ I
SI Independent Attrs Vk S1 ≡ SD1 or SR1 IK

SD Covariant Discrete ql1l2... IK
SR Covariant Real µkΣkk′ (I +K)K2

SV Block Covariance Vb BKb SB ≡ SD or SR NK(IKb +K2
b )

SM Flat Class Mixture αcVc C R SC ≡ SI or SV NKC(IKb +K2
b )

SH Tree Class Mixture αcVc JcKcTc R SC ≡ SI or SV NKC(IKb +K2
b )

Table 1: Model Spaces

the number of heads. Such sums are called “sufficient
statistics” since they summarize all the information rel-
evant to a model.
We choose a prior

dπ(V |SD1) = dB(q1 . . . qL|L) ≡ Γ(aL)
Γ(a)L

∏
l

qa−1
l dql

which for a > 0 is a special case of a beta distribu-
tion [Berger, 1985] (Γ(y) is the Gamma function [Spiegel,
1968]). This formula is parameterized by a, a “hyperpa-
rameter” which can be set to different values to specify
different priors. Here we set a = 1/L. This simple prob-
lem has only one maximum, whose marginal is given by

M(E|SD1) = F1(I1, . . . , IL, I, L) ≡ Γ(aL)
∏

l Γ(Il + a)
Γ(aL+ I)Γ(a)L

We have abstracted the function F1, so we can refer to it
later. The prior above was chosen because it has a form
similar to the likelihood (and is therefore a ”conjugate”
prior), and to make the following mean estimate of ql
particularly simple

E(ql|ESD1) = F2(Il, I, L) ≡ Il + a
I + aL

=
Il + 1

L

I + 1

for a = 1/L. F2 is also abstracted out for use later.
Note that while F2(Il, I, L) is very similar to the classical
estimate of Il

I
, F2 is defined even when I = 0. Using a

hash table, these results can be computed in order I
numerical steps, independent of L.

4.2 Single Real Attribute - SR1

Real attribute values Xi specify a small range of the real
line, with a center xi and a precision, ∆xi, assumed to be
much smaller than other scales of interest. For example,
someone’s weight might be measured as 70±1 kilograms.
For scalar attributes, which can only be positive, like
weight, it is best to use the logarithm of that variable
[Aitchison and Brown, 1957].
For SR1 , where there is only one real attribute, we

assume the standard normal distribution, where the suf-
ficient statistics are the data mean x = 1

I

∑I
i xi, the ge-

ometric mean precision ∆̂x = (
∏I

i ∆xi)
1
I and the stan-

dard deviation s given by s2 = 1
I

∑
i(xi−x)2. V consists

of a model mean µ and deviation σ, and the likelihood
is given by the standard normal distribution.

dL(xi|V SR1) =
1√
2πσ

e−
1
2 (

xi−µ

σ )2 dxi.

For example, people’s weight might be distributed with
a mean of 80 kilograms and a deviation of 15. Since
all real data have a finite width, we replace dx with
∆x to approximate the likelihood ∆L(Xi|V SR1) =∫
∆x dL(xi|V SR1) ∼= ∆x

dx dL(xi|V SR1).
As usual, we choose priors that treat the parameters

in V independently.

dπ(V |SR1) = dπ(µ|SR1) dπ(σ|SR1)

We choose a prior on the mean to be flat in the range of
the data,

dπ(µ|SR1) = dR(µ|µ+, µ−)

where µ+ = maxxi, µ− = minxi, by using the general
uniform distribution

dR(y|y+, y−) ≡ dy

y+ − y− for y ∈ [y−, y+].

A flat prior is preferable because it is non-informative,
but note that in order to make it normalizable we must
cheat and use information from the data to cut it off at
some point. In the single attribute case, we can similarly
choose a flat prior in log(σ).

dπ(σ|SR1) = dR(log(σ)|log(∆µ), log(min∆xi))

where ∆µ = µ+ − µ−. The posterior again has just one
peak, so there is only one region R, and the resulting
marginal is

M(E|SR1) =
√
π

2
Γ( I−1

2 )

(πI)
1
2

1
log(∆µ/min∆xi)

∆̂x
I

sI−1∆µ
.

Note that this joint is dimensionless. The estimates are
simply E(µ|ESR1) = x, and E(σ|E) =

√
I

I+1s. Com-
putation here takes order I steps, used to compute the
sufficient statistics.
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4.3 Independent Attributes - SI
We now introduce some notation for collecting sets of
indexed terms like Xik. A single such term inside a {}
will denote the set of all such indexed terms collected
across all of the indices, like i and k in E = {Xik} ≡
{Xik such that i ∈ [1, . . . , I], k ∈ K}. To collect across
only some of the indices we use

⋃
k as in Ei =

⋃
kXik ≡

{Xi1, Xi2, . . .}, all the evidence for a single case i.
The simplest way to deal with cases having multiple

attributes is to assume SI that they are all independent,
i.e., treating each attribute as if it were a separate prob-
lem. In this case, the parameter set V partitions into
parameter sets Vk =

⋃
lk
qlk or [µk, σk], depending on

whether that k is discrete or real. The likelihood, prior,
and joint for multiple attributes are all simple products
of the results above for one attribute: S1 = SD1 or SR1

— i.e.,
L(Ei|V SI) =

∏
k

L(Xik|VkS1),

dπ(V |SI) =
∏
k

dπ(Vk|S1),

and
M(E|SI) =

∏
k

J(E(k)|S1)

where E(k) ≡ ⋃
iXik, all the evidence associated with

attribute k. The estimates E(Vk|ESI) = E(Vk|E(k)S1)
are exactly the same. Computation takes order IK steps
here.

4.4 Fully Covariant Discretes - SD
A model space SD which allows a set K of discrete at-
tributes to fully covary (i.e, contribute to a likelihood in
non-trivial combinations) can be obtained by treating all
combinations of base attribute values as particular val-
ues of one super attribute, which then has L′ =

∏
k Lk

values — so L′ can be a very large number! V consists
of terms like ql1l2...lK , indexed by all the attributes. Il
generalizes to

Il1l2...lK =
∑
i

∏
k

δxik lk .

Given this transformation, the likelihoods, etc. look the
same as before:

L(Ei | V SD) = ql1l2...lK ,
where each lk = Xik,

dπ(V |SD) = dB({ql1l2...lK } | L′),

M(E|SD) = F1({Il1l2...lK} , I, L′),

and 6

E(ql1l2...lK |ESD) = F2(Il1 l2...lK , I, L
′)

Computation takes order IK steps here. This model
could, for example, use a single combined hair-color eye-
color attribute to allow a correlation between people be-
ing blond and blue-eyed.

6F1 and F2 are defined on page 4.

4.5 Fully Covariant Reals - SR
If we assume SR that a set K of real-valued attributes
follow the multivariate normal distribution, we replace
the σ2

k above with a model covariance matrix Σkk′ and
s2k with a data covariance matrix

Skk′ =
1
I

∑
i

(xik − xk)(xik′ − xk′)

. The Σkk′ must be symmetric, with Σkk′ = Σk′k,
and “positive definite”, satisfying

∑
kk′ ykΣkk′yk′ > 0

for any vector yk. The likelihood for a set of attributes
K is7

dL(Ei|V SR) = dN(Ei, {µk} , {Σkk′} , K)

≡ e−
1
2

∑
kk′ (xk−µk)Σinv

kk′(xk′−µk′)

(2π)K
2 |Σkk′| 12

∏
k

dxk

is the multivariate normal in K dimensions.
As before, we choose a prior that takes the means to

be independent of each other, and independent of the
covariance

dπ(V |SR) = dπ({Σkk′} |SR)
∏
k

dπ(µk|SR1),

so the estimates of the means remain the same,
E(µk|ESR) = xk. We choose the prior on Σkk′ to use
an inverse Wishart distribution [Mardia et al., 1979]

dπ({Σkk′} |SR) = dW inv
K ({Σkk′} | {Gkk′} , h) ≡

|Gkk′|−h
2 |Σkk′ |−h−K−1

2 e−
1
2

∑
K

kk′ Σinv
kk′Ginv

k′k

2
Kh
2 π

K(K−1)
4

∏K
a Γ(

h+1−a
2 )

K∏
k≤k′

dΣkk′

which is normalized (integrates to 1) for h ≥ K and
Σkk′ symmetric positive definite. This is a “conju-
gate” prior, meaning that it makes the resulting poste-
rior dπ({Σkk′} |ESR) take the same mathematical form
as the prior. This choice makes the resulting integrals
manageable, but requires us to choose an h and all the
components of Gkk′. We choose h = K to make the
prior as broad as possible, and for Gkk′ we “cheat” and
choose Gkk′ = Skkδkk′ in order to avoid overly distorting
the resulting marginal

M(E|SR) =
∏K

a
Γ( I+h−a

2 )

Γ( 1+h−a
2 )

I
K
2 π

K(I−1)
2

|Gkk′| h
2

|ISkk′ +Gkk′| I+h−1
2

K∏
k

∆̂xk
I

∆µk

and estimates

E(Σkk′ |ESR) = ISkk′ +Gkk′

I + h−K − 2 =
I + δkk′

I − 2 Skk′.

If we choose Gkk′ too large it dominates the esti-
mates, and if Gkk′ is too small the marginal is too small.

7Σinv
ab denotes the matrix inverse of Σab satisfying∑

b
Σinv

ab Σbc = δac, and |Σab| denotes components of the ma-

trix determinant of {Σab}.
6



The compromise above should only over estimate the
marginal somewhat, since it in effect pretends to have
seen previous data which agrees with the data given.
Note that the estimates are undefined unless I > 2.
Computation here takes order (I + K)K2 steps. At
present, we lack a satisfactory way to approximate the
above marginal when some values are unknown.

4.6 Block Covariance - SV
Rather than just having either full independence or full
dependence of attributes, we prefer a model space SV
where some combinations of attributes may covary while
others remain independent. This allows us to avoid pay-
ing the cost of specifying covariance parameters when
they cannot buy us a significantly better fit to the data.
We partition the attributes K into B blocks Kb, with

full covariance within each block and full independence
between blocks. Since we presently lack a model allowing
different types of attributes to covary, all the attributes
in a block must be of the same type. Thus real and
discretes may not mutually covary.
We are away of other models of partial dependence,

such as the the trees of Chow and Liu described in [Pearl,
1988], but choose this approach because it includes the
limiting cases of full dependence and full independence.
The evidence E partitions block-wise into E(Kb) (us-

ing Ei(K) ≡
⋃
k∈KXik and E(K) ≡ {Ei(K)}), each with

its own sufficient statistics; and the parameters V parti-
tion into parameters Vb = {ql1l2...lK } or [{Σkk′} , {µk}].
Each block is treated as a different problem, except that
we now also have discrete parameters T to specify which
attributes covary, by specifying B blocks and {Kb} at-
tributes in each block. Thus the likelihood

L(Ei|V TSV ) =
B∏
b

L(Ei(Kb)|VbSB)

is a simple product of block terms SB = SD or SR assum-
ing full covariance within each block, and the estimates
E(Vb|ETSV ) = E(Vb|E(Kb)SB) are the same as before.
We choose a prior which predicts the block structure

B {Kb} independently of the parameters Vb within each
independent block

dπ(V T |SV ) = π(B {Kb} |SV )
∏
b

dπ(Vb|SB)

which results in a similarly decomposed marginal

M(ET |SV ) = π(B {Kb} |SV )
∏
b

M(E(Kb)|SB).

We choose a block structure prior

π(B {Kb} |SV ) = 1/KRZ(KR, BR)KDZ(KD , BD),

where KR is the set of real attributes and BR is the
number of real blocks (and similarly for KD and BD).
This says that it is equally likely that there will be one
or two or three, etc. blocks, and, given the number of

blocks, each possible way to group attributes is equally
likely. This is normalized using Z(A, U), given by

Z(A, U) ≡
U∑
u=1

(−1)u−1 (U − u+ 1)A
(U − u+ 1)! (u− 1)! ,

which gives the number of ways one can partition a set
with A elements into U subsets. This prior prefers the
special cases of full covariance and full independence,
since there are fewer ways to make these block combi-
nations. For example, in comparing the hypothesis that
each attribute is in a separate block (i.e., all indepen-
dent) with the hypothesis that only one particular pair
of attributes covary together in a block of size two, this
prior will penalize the covariance hypothesis in propor-
tion to the number of such pairs possible. Thus this
prior includes a “significance test”, so that a covariance
hypothesis will only be chosen if the added fit to the
data from the extra covariance is enough to overcome
this penalty.
Computation here takes order NK(IKb +K2

b ) steps,
where N is the number of search trials done before quit-
ting, which would be around (K − 1)! for a complete
search of the space. Kb is an average, over both the
search trials and the attributes, of the block size of real
attributes (and unity for discrete attributes).

5 Class Mixtures

5.1 Flat Mixtures - SM
The above model spaces SC = SV or SI can be thought
of as describing a single class, and so can be extended
by considering a space SM of simple mixtures of such
classes [D.M.Titterington et al., 1985]. Figure 1 shows
how this model, with SC = SI , can fit a set of artificial
real-valued data in five dimensions.

Figure 1: AutoClass III Finds Three Classes
We plot attributes 1 vs. 2, and 3 vs. 4 for an artificial data
set. One σ deviation ovals are drawn around the centers of
the three classes.

In this model space the likelihood

L(Ei|V TSM ) =
C∑
c

αcL(Ei|VcTcSC )

7



sums over products of “class weights” αc, that give the
probability that any case would belong to class c of the
C classes, and class likelihoods describing how members
of each class are distributed. In the limit of large C this
model space is general enough to be able to fit any dis-
tribution arbitrarily closely, and hence is “asymtotically
correct”.
The parameters T = [C, {Tc}] and V = [{αc} , {Vc}]

combine parameters for each class and parameters de-
scribing the mixture. The prior is similarly broken down
as

dπ(V T |SM ) = F3(C)C! dB({αc} |C)
∏
c

dπ(VcTc|SC)

where F3(C) ≡ 6
π2C2 for C > 0 and is just one arbitrary

choice of a broad prior over integers. The αc is treated
as if the choice of class were another discrete attribute,
except that a C! is added because classes are not distin-
guishable a priori.
Except in very simple problems, the resulting joint

dJ(EV T |S) has many local maxima, and so we must
now focus on regions R of the V space. To find such
local maxima we use the “EM” algorithm [Dempster et
al., 1977] which is based on the fact that at a maxima
the class parameters Vc can be estimated from weighted
sufficient statistics. Relative likelihood weights

wic =
αcL(Ei|VcTcSC)
L(Ei|V TSM ) ,

give the probability that a particular case i is a member
of class c. These weights satisfy

∑
c wic = 1, since every

case must really belong to one of the classes. Using these
weights we can break each case into “fractional cases”,
assign these to their respective classes, and create new
“class data” Ec =

⋃
ik [Xik, wic] with new weighted-class

sufficient statistics obtained by using weighted sums∑
i wic instead of sums

∑
i. For example Ic =

∑
i wic,

xkc = 1
Ic

∑
i wicxik, Il1...lKc =

∑
i wic

∏
k δxiklk , and

∆̂xkc =
∏I

i ∆xik
wic
Ic . Substituting these statistics into

any previous class likelihood function L(E|VcTcSC) gives
a weighted likelihood L′(Ec|VcTcSC) and associated new
estimates and marginals.
At the maxima, the weights wic should be consistent

with estimates of V = {[αc, Cc]} from E(Vc|ERSM ) =
E ′(Vc|EcSC) and E(αc|ERSM) = F2(Ic, I, C). To reach
a maxima we start out at a random seed and repeatedly
use our current best estimates of V to compute the wic,
and then use the wic to re-estimate the V , stopping when
they both predict each other. Typically this takes 10−
100 iterations. This procedure will converge from any
starting point, but converges more slowly near the peak
than second-order methods.
Integrating the joint in R can’t be done directly be-

cause the product of a sum in the full likelihood is hard
to decompose, but if we use fractional cases to approxi-

mate the likelihood

L(Ei|V TRSm) =
C∑
c

αcL(Ei|VcTcSC)

∼=
∏
c

(αcL(Ei|VcTcSC))wic

holding the wic fixed, we get an approximate joint:

M(ERT |SM ) ∼= F3(C)C!F1({Ic} , I, C)
∏
c

M ′(EcT |SC)

Our standard search procedure combines an explicit
search in C with a random search in all the other pa-
rameters. Each trial begins converging from classes built
around C random case pairs. The C is chosen randomly
from a log-normal distribution fit to the Cs of the 6−10
best trials seen so far, after trying a fixed range of Cs to
start. We also have developed alternative search proce-
dures which selectively merge and split classes according
to various heuristics. While these usually do better, they
sometimes do much worse.
The marginal joints of the different trials generally

follow a log-normal distribution, allowing us to estimate
during the search how much longer it will take on average
to find a better peak, and how much better it is likely
to be.
In the simpler model space SMI where SC = SI the

computation is order NICK, where C averages over the
search trials. N is the number of possible peaks, out
of the immense number usually present, that a compu-
tation actually examines. In the covariant space SMV

where SC = SV this becomes NKC(IKb +K2
b ).

5.2 Class Hierarchy and Inheritance - SH
The above class mixture model space SM can be gener-
alized to a hierarchical space SH by replacing the above
set of classes with a tree of classes. Leaves of the tree,
corresponding to the previous classes, can now inherit
specifications of class parameters from “higher” (closer
to the root) classes. For the purposes of the parameters
specified at a class, all of the classes below that class
pool their weight into one big class. Parameters associ-
ated with “irrelevant” attributes are specified indepen-
dently at the root. Figure 2 shows how a class tree, this
time with SC = SV , can better fit the same data as in
Figure 1. See [Hanson et al., 1991] for more about this
comparison.
The tree of classes has one root class r. Every other

class c has one parent class Pc, and every class has Jc
child classes given by Ccj, where the index j ranges over
the children of a class. Each child class has a weight
αcj relative to its siblings , with

∑Jc

j αcj = 1, and an
absolute weight αCcj = αcjαc, with αr = 1.
While other approaches to inheritance are possible,

here each class is given an associated set of attributes
Kc, which it predicts independently through a likeli-
hood L(Ei(Kc)|VcTcSC) and which no class above or be-
low it predicts. To avoid having redundant trees which

8



Figure 2: AutoClass IV Finds Class Tree ×10120 Better
Lists of attribute numbers denote covariant blocks within
each class, and the ovals now indicate the leaf classes.

describe the same likelihood function, only Kr can be
empty, and non-leaves must have Jc ≥ 2.
We need to ensure that all attributes are predicted

somewhere at or above each leaf class. So we call Ac

the set of attributes which are predicted at or below
each class, start with Ar = K, and then recursively par-
tition each Ac into attributes Kc “kept” at that class,
and hence predicted directly by it, and the remaining
attributes to be predicted at or below each child ACcj .
For leaves Ac = Kc.
Expressed in terms of the leaves the likelihood is again

a mixture:

L(Ei|V TSM ) =
∑

c:Jc=0

αc
∏

c′=c,Pc,PPc ,...,r

L(Ei(Kc′)|Vc′Tc′SC)

allowing the same EM procedure as before to find local
maximas. The case weights here wci =

∑Jc

j wCcj i (with
wri = 1) sum like in the flat mixture case and define
class statistics Ec(Kc) =

⋃
k∈Kc,i

[Xik, wci].
We also choose a similar prior, though it must now

specify the Kc as well:

dπ(V T |SH) =∏
c

dπ(JcKc | AcSH)Jc! dB(
⋃
j

αcj|Jc) dπ(VcTc | KcSC )

dπ(JcKc | AcSH) = F3(Jc − 1)Kc! (Ac −Kc)!
(Ac + δrc)Ac!

for all subsets Kc of Ac of size in the range [1− δcr , Ac],
except that F3(Jc−1) is replaced by δ0Jc when Ac = Kc.
Note that this prior is recursive, as the prior for each
class depends on the what attributes have been chosen
for its parent class.
This prior says that each possible number of attributes

kept is equally likely, and given the number to be kept
each particular combination is equally likely. This prior
prefers the simpler cases of Kc = Ac and Kc = 1 and so
again offers a significance test. In comparing the hypoth-
esis that all attributes are kept at class with a hypothesis
that all but one particular attribute will be kept at that

class, this prior penalizes the all–but–one hypothesis in
proportion to the number of attributes that could have
been kept instead.
The marginal joint becomes

M(ERT |SH) ∼=
∏
c

dπ(JcKc | AcSH)Jc!F1(
⋃
j

ICcj , Ic, Jc)M
′(Ec(Kc)Tc|SC)

and
estimates are again E(Vc|ERSH) = E ′(Vc|Ec(Kc)SC )
and E(αcj|ERSH) = F2(Icj , Ic, Jc).
In the general case of SHV , where SC = SV , computa-

tion again takes NKC(IKb +K2
b ), except that the J is

now also an average of, for each k, the number of classes
in the hierarchy which use that k (i.e., have k ∈ Kc).
Since this is usually less than the number of leaves, the
model SH is typically cheaper to compute than SM for
the same number of leaves.
Searching in this most complex space SHV is challeng-

ing. There are a great many search dimensions where one
can trade off simplicity and fit to the data, and we have
only begun to explore possible heuristics. Blocks can be
merged or split, classes can be merged or split, blocks
can be promoted or demoted in the class tree, EM itera-
tions can be continued farther, and one can try a random
restart to seek a new peak. But even the simplest ap-
proaches to searching a more general model space seem
to do better than smarter searches of simpler spaces.

6 Conclusion

The Bayesian approach to unsupervised classification de-
scribes each class by a likelihood function with some free
parameters, and then adds in a few more parameters to
describe how those classes are combined. Prior expecta-
tions on those parameters V T combine with the evidence
E to produce a marginal jointM(ERT |S) which is used
as an evaluation function for classifications in a region
R near some local maxima of the continuous parameters
V and with some choice of discrete model parameters T .
This evaluation function optimally trades off the com-
plexity of the model with its fit to the data, and is used
to guide an open-ended search for the best classification.
In this paper we have applied this theory to model

spaces of varying complexity in unsupervised classifica-
tion. For each space we provides a likelihood, prior,
marginal joint, and estimates. This should provide
enough information to allow anyone to reproduce Au-
toClass, or to use the same evaluation functions in other
contexts where these models might be relevant.
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