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Abstract. Given a finite state space and common priors, common knowledge of
the identity of an agent with the minimal (or maximal) expectation of a random
variable implies “consensus”, i.e., common knowledge of common expectations. This
“extremist” statistic induces consensus when repeatedly announced, and yet, with
n agents, requires at most log2 n bits to broadcast.
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1. Introduction

Given a group of rational Bayesian agents, let a “knowledge property”
be some statistic over the information held by individual agents. If
these agents start from common prior beliefs, there are a number of
knowledge properties where common knowledge of the property among
the group is known to imply “consensus”, i.e., common knowledge of
common expectations regarding some random variable. And for most
of these knowledge properties, it has also been shown that common
knowledge of the property, and hence consensus, is eventually induced
in finite worlds simply by repeatedly announcing the current value of
the property.

For example, Nielsen et. al. (1990) showed that common knowledge
of any “stochastically monotone” statistic, i.e., a sum of strictly mono-
tonic functions of each agent’s expectation, implies that these expec-
tations are equal. And in a finite world, repeatedly announcing such
a statistic eventually induces common expectations. Thus if a market
clearing price is stochastically monotone in some expectation (several
such models are in McKelvey & Page (1986)), consensus can be induced
by repeatedly announcing such a market price.

Previously known consensus-inducing knowledge properties, howev-
er, share with this example the feature of being relatively direct and
precise functions of or bounds on the numerical values of individual
estimates. For example, announcing a stochastically monotone market
price knowledge property would generically aggregate all private infor-
mation with a single annoucement. Given substantial private informa-
tion (a large state space and fine information partitions), doing so would
require announcing a very precise price via a very long annoucement
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message. Thus this may not be a realistic model of actual information
aggregation, in markets or elsewhere.

In contrast, this note presents a different sort of consensus-inducing
knowledge property, one which directly concerns agent identity rather
than agent estimate numbers. Because of this, given n agents at most
log2 n bits is needed to broadcast this property, regardless of the size
of the state space or information partitions.

Specifically I show that, given common priors and finite informa-
tion partitions, common knowledge of the identity of an agent with
minimum (or maximum) expectation for a real-valued random variable
implies consensus, i.e., common knowledge of common expectations,
and that repeated announcement of this property implies eventual com-
mon knowledge of it.

This result thus raises hopes of creating economic models of conver-
gence to consensus with more realistic message lengths. For example, a
common value auction might reach convergence by repeatedly announc-
ing the identity of the current high bidder. Or a community of experts
might reach consensus via repeated media coverage of those with the
most extreme views. This note, however, does not elaborate any such
models.

2. Previous Work

Aumann (1976) first showed that common knowledge of all posterior
beliefs regarding some event implies common posterior beliefs regard-
ing that event. Sebenius and Geanakoplos (1983) then showed that if
it is common knowledge among two agents that one agent’s condition-
al expectation of some real-valued random variable is non-negative,
and that the other agent’s expectation is non-positive, then these two
expectations must both be zero. (These results generalize trivially to
any non-zero dividing point.)

McKelvey and Page (1986) allowed any number of agents, and
showed that they need only have common knowledge of a single aggre-
gate statistic of their posteriors, if this statistic is a sum of strict-
ly monotonic functions of each posterior. Neilsen, Brandenburger,
Geanakoplos, McKelvey, and Page (1990) extended this result from
posteriors of an event to conditional expectations of any real-valued
random variable. Neilsen (1995) generalized this result to statistics of
multivariate random variables.

Geanakoplos and Polemarchakis (1982) showed with finite infor-
mation partitions, the posteriors of two agents regarding some event
become common knowledge after a finite number of steps of communi-
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cating these posteriors back and forth. Neilsen (1984) generalized this
to information represented by sigma-algebras instead of partitions.

Sebenius and Geanakoplos (1983) showed that within a finite num-
ber of steps of communicating back and forth whether one agent’s
expectation is strictly positive, and whether the other agent’s expecta-
tion is strictly negative, someone will deny one of these statements.
McKelvey and Page (1986) showed that repeated announcement of
their monotonic statistic induces common knowledge, and even test-
ed this prediction in (McKelvey & Page, 1990) in a simple, though
unfortunately flawed (Hanson, ), experiment.

3. Notation

Following the notation of Nielsen et. al. (1990), let Ω be a finite set of
states of the world ω, each with positive prior P (ω). Let each agent
i ∈ N start with the same common prior beliefs P (ω), and then receive
private information according to a partition Πi of Ω, and let Πi(ω)
denote the element of Πi containing ω ∈ Ω. (And assume all i know all
Πi.)

Given any real-valued random variable X(ω), if the true state is ω∗
then agent i will have a conditional expectation of X given by

Xi(ω∗) ≡ E(X |Πi(ω∗)) ≡
∑

ω∈Πi(ω∗) X(ω)P (ω)∑
ω∈Πi(ω∗) P (ω)

(1)

For any true state ω, we say it is common knowledge among N that
the true state is in Π(ω), where the partition Π ≡ ∧i∈NΠi is the meet
(or finest common coarsening) of the partitions Πi. We also call an
event A ⊂ Ω common knowledge at ω if Π(ω) ⊂ A, we call a predicate
P common knowledge at ω if the event {ω′ ∈ Ω | P(ω′)} is common
knowledge, and we call a function f common knowledge at ω if for all
ω′ ∈ Π(ω) we have f(ω′) = f(ω).

Finally, let a knowledge property be a function F (ω, Π1(ω), Π2(ω) . . .)
of the state ω and partition elements Πi(ω). This includes any func-
tion of partition element probabilities P (Πi(ω)) =

∑
ω′∈Πi(ω) P (ω′) or

expectations E(X | Πi(ω)). Such a knowledge property is noisy if the
dependence on the first argument is non-trivial.

4. Common Knowledge of an Inequality

Sebenius and Geanakoplos (1983) prove their Proposition 2, a “no bet-
ting” theorem:

extremists.tex; 5/09/1997; 16:24; no v.; p.3



4 R. HANSON

THEOREM 1. For any two agents, if it is common knowledge that
one’s expectation is no less than some value, and that the other’s expec-
tation is no greater than this value, then it is common knowledge that
these expectations are equal.

This result is represented in Figure 1a. The axes are the expectations
X1 and X2 of two agents regarding some bounded variable (with a
maximum and minimum possible value), and so points in this graph
are expectation pairs 〈X1, X2〉. Theorem 1 says that if it is common
knowledge that the expectation pair is somewhere in the shaded region,
then it must be common knowledge that this pair is on the diagonal.
This result is more general that Aumann’s previous result of Aumann
(1976), which required common-knowledge of the exact location of this
pair 〈X1, X2〉.

Using a small variation on Sebenius and Geanakoplos’s proof of the-
orem 1, we can prove theorem 2 below, which requires only that it be
common knowledge that the pair is in the larger region shown in Fig-
ure 1b. Since this region contains any region as in Figure 1a, this result
subsumes the previous result, and is not implied by it.

THEOREM 2. For any two agents, if it is common knowledge that
one’s expectation is no less than the other’s, then it is common knowl-
edge that these expectations are equal.

Proof. By rearranging equation 1, we have
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∑
ω∈Πi(ω∗)

Xi(ω)P (ω) =
∑

ω∈Πi(ω∗)

X(ω)P (ω)

Summing this over the partition elements Πi(ω∗) ⊂ Π(ω∗), we get
∑

ω∈Π(ω∗)

Xi(ω)P (ω) =
∑

ω∈Π(ω∗)

X(ω)P (ω) (2)

Since the right hand side is independent of i, then for all i, j ∈ N we
must have

∑
ω∈Π(ω∗)

[Xi(ω)− Xj(ω)]P (ω) = 0 (3)

If it is common knowledge at ω∗ that Xi(ω∗) ≥ Xj(ω∗), then this is true
for all ω ∈ Π(ω∗), and so equation 3 becomes a sum of non-negative
terms set equal to zero, which can only be if each term in the sum
is zero. Thus for all ω ∈ Π(ω∗) we have Xi(ω) = Xj(ω), and so this
equality is common knowledge.

COROLLARY 3. If it is common knowledge that no one has a lower
(or greater) expectation than a particular agent, then it is common
knowledge that all expectations are equal.

Proof. If there is a j such that for all i ∈ N , it is common knowl-
edge that Xi(ω) ≥ Xj(ω) (or that Xi(ω) ≤ Xj(ω)), then by repeated
application of theorem 2, for all i ∈ N it is common knowledge that
Xi(ω) = Xj(ω). So is is common knowledge that they are all equal.

5. Common Knowledge Via Repeated Announcements

Most common knowledge results have a related result regarding
repeated-announcements. For example, given our choice of a finite state
space Ω, we can easily prove the following, using only a small variation
on previous proofs (such as McKelvey & Page (1986)).

THEOREM 4. If a knowledge property is repeatedly announced, then
that property will become common knowledge in a finite number of steps.

Proof. Recall that a (noisy) knowledge property at step t is a func-
tion F of the state ω and the partitions Πt

i(ω) of agents at step t. By
definition, an announcement regarding the value of property F at step
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t results in this value being common knowledge at step t + 1. That is,
for all ω′ ∈ Πt+1(ω),

F (ω′, Πt
1(ω

′), Πt
2(ω

′), . . .) = F (ω, Πt
1(ω), Πt

2(ω), . . .)

Now every announcement either refines someone’s information parti-
tion Πi, or it informs no one. Given a finite state space Ω, only a
finite number of such partition changes are possible, so there is a point
after which announcements are uninformative. But if no partitions have
changed from step t to t + 1, then Πt+1

i (ω) = Πt
i(ω), and so at step t

this knowledge property F has become common knowledge at ω.

Consider the set of agents argmini∈NXi(ω), with minimal expecta-
tions of X . Any method of selecting one of these agents is a knowledge
property, if it depends at most on the state ω and the information sets
Πi(ω) . Thus we can easily combine corollary 3 and theorem 4 above
to conclude the following.

COROLLARY 5. Repeatedly announcing the identity of an agent who
currently has the minimum (or maximum) expectation will, in a finite
number of steps, result in common knowledge that these expectations
are equal.

6. Bounded Broadcasts

A well known result in information theory (see Cover & Thomas (1991))
is that the minimum expected number of (noiseless) bits B needed to
communicate any variable X(ω) to an agent known to have prior P (ω)
is B = −∑

x p(x) log2 p(x), where p(x) ≡ P ({ω : X(ω) = x}), and
where we adopt the convention that 0log0 = 0. It is also well known that
if there are at most n possible values of X , so that |{x : p(x) > 0}| ≤ n,
then B ≤ log2(n).

If a knowledge property F is broadcast at stage t, so that each
agent i receives the same message, then the common knowledge prior
P (ω)/P (Πt(ω)) is the natural choice for encoding F . Thus the expect-
ed number of bits Bt(ω∗) required to announce F at step t in state ω∗
is Bt(ω∗) = −∑

f p(f) log2 p(f), where

p(f) ≡ P ({ω ∈ Π(ω∗) : F (ω, Πt
1(ω), Πt

2(ω), . . .) = f})
P (Πt(ω∗))

.

Since there are never more possible extremists than there are agents,
we can conclude the following.
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COROLLARY 6. Announcing the identity of an agent with the mini-
mum (or maximum) expectation requires an expected message length of
no more than log2 |N | bits, independent of the information structure
Ω, P , and Πi.

In contrast, no similar message length bounds are known to hold for
the other knowledge properties known to induce consensus by repeat-
ed announcement. For example, consider McKelvey and Page’s (1986)
“stochastically monotone” (non-noisy) knowledge property, a sum of
monotonic functions of each agent’s expectation Xi.

With a generic prior and random variable, such a knowledge prop-
erty F , when applied to the initial information partitions Πi, can easily
give a different value f = F (ω, Π1(ω), Π2(ω), . . .) in each element of the
join (or coarsest common refinement) Π̂ ≡ ∨i∈NΠi, and hence induce
full information pooling on the first announcement. This is the typ-
ical behavior, for example, of the class of environments used in the
McKelvey and Page (1990) experiments, and is closely related to the
common phenomena of prices inducing complete information pooling
in rational expectations models.

Since inducing full information pooling in one announcement
requires communicating all private information in one announcement,
the message length required to broadcast this announcement grows
without bound as the total amount of private information grows with-
out bound. Specifically, it would require an expected

∑
π∈Π̂

P (π|Π(ω))logP (π|Π(ω))

bits to broadcast all private information.

7. Conclusion

When priors beliefs are common and information partitions are finite,
common knowledge of the identity of an agent with extreme expecta-
tions implies consensus, i.e., common expectations for perfectly rational
agents. Consensus can thus be induced simply by repeatedly announc-
ing the identity of an extremist.

In contrast to the other consensus-inducing knowledge properties,
only a bounded, and moderate, message length is required to broad-
cast an extremist identity. This property thus offers the possibility of
models of convergence to consensus with more realistic announcement-
communication bandwidths.
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