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Abstract

Extraordinary claims require extraordinary evidence. But on uninteresting topics,

surprising claims usually are surprising evidence; we rarely make claims without suffi-

cient evidence. On interesting topics, however, we can have interests in exaggerating or

downplaying our evidence, and our actions often deviate from our interests. In a simple

model of noisy humans reporting on extraordinary evidence, we find that extraordinary

claims from low noise people are extraordinary evidence, but such claims from high

noise people are not; their claims are more likely unusual noise than unusual truth.

When people are organized into a reporting chain, noise levels grow exponentially with

chain length; long chains seem incapable of communicating extraordinary evidence.

Introduction

People who make surprising claims are often told “extraordinary claims require extraordinary
evidence.” This maxim, however, seems to neglect the fact that for someone known to be
reliable, in the sense that he would only make a surprising claim if he had actually seen
surprising evidence, his extraordinary claim would be extraordinary evidence to others.

For example, you would assign a very low prior probability to your friend telling you
that she met her 5’2” tall second cousin last Tuesday at 8:47am at 11 feet northwest of the
smaller statue in a certain square. Nevertheless, after she made such a claim to you, you

∗For comments I thank Stuart Armstrong, Hal Finney, James Miller, Lubos Motl, Mark Resnick, Barkley
Rosser, John Thacker, Eliezer Yudkowsky, students in my Spring 2007 Graduate Industrial Organization
class, and commentors on Jan. 18, 21, and Mar. 27 2007 posts at OvercomingBias.com. For financial
support, I thank the Center for Study of Public Choice and the Mercatus Center.

†rhanson@gmu.edu http://hanson.gmu.edu 703-993-2326 FAX: 703-993-2323 MS 1D3, Carow Hall, Fair-
fax VA 22030

1



would likely place a high probability that the event happened as claimed. On topics like
this, most people are fairly reliable.

For many kinds of more interesting topics, however, people can be less reliable. Not only
do we not always do exactly what is in our best interest, but on such topics we often have
interests that bias what we say. Furthermore, most communications we could receive from
people making extraordinary claims are filtered through several levels of intermediaries, each
staffed by these same unreliable humans. With such distortions, extraordinary claims need
not rise to the level of extraordinary evidence.

In this note we analyze a simple model of this situation. We consider a single parameter,
such as the money a business venture will make, the energy a device could release, or the
expected number of people to be killed in a looming disaster. We assume a power law
distribution for this parameter, so that large values become both especially unlikely as well
as interesting, i.e., “extraordinary.”

In the model, a person gets a noisy signal about this parameter, after which he updates
his beliefs. We find that his median estimate should be lower than his signal, and that this
difference should be linear in his signal variance. This corrects for the fact that with higher
signal variance, high signals are more often due to signal error, instead of high truth. With
enough signal noise, a truly extraordinary parameter value almost never shows itself clearly
in an extraordinary signal.

If expertise and context is required to interpret a signal, then a person cannot simply
pass on his signal “word for word” to others; he must instead summarize what his signal
implies about the parameter of interest. This process of summarizing, however, also allows
room for error and distortion.

We assume that each person does not always act optimally, though he is more likely to
take actions which better achieve his interest. We also assume that while each person has
a strong incentive to make forecasts which are likely to be correct, he also has a small bias
incentive to either exaggerate or downplay the parameter value. Only he knows the exact
strength of this bias; observers know only the distribution from which his bias is drawn.

In our society there are many intermediaries between those who make extraordinary
claims and decision makers who might react to such claims. For example, if a government
employee makes an extraordinary discovery, news of that discovery will be filtered through
many levels of middle management, each of whom reserves the right to interpret and “spin”
that news to adapt to context.

Consider an academic example. Nature might reveal extraordinary evidence to a research
assistant, who then describes it to his project leader. The leader submits a paper describing
these results to journals, where referees report their evaluation to editors, who then decide
whether to publish. A journal or laboratory publicist may then suggest the publication to
news reporters, who submit articles to news editors, who choose what readers see.

We will show that distortions introduced by these many intermediaries accumulate and
increase effective signal variance exponentially. While the extraordinary claim of a single
person could count for a great deal of extraordinary evidence, a chain of a half dozen of the
same sort of people can effectively eliminate that evidence.
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We now define the model, and then describe its solution and illustrate with an example.

Model

Consider a one dimensional spectrum of possibilities x, such as how many people will be
killed in a looming disaster. Let us assume that x is distributed according to a power law1

P (x > x̂) ∝ x̂−β , so that large values of x are “extraordinary.” That is, large values are
especially unlikely, but also especially important.

Let us transform the description of our parameter of interest from x to y = log(x), which
is then distributed with density π(y) ∝ e−βy. We will assume that nature gives someone a
noisy signal s that is normally distributed in y, and so log-normally distributed in x. That
is, an agent has access to a signal s = y + ε, where ε ∼ N(0, σ2).

A perfectly rational, honest, and clear agent would, up seeing signal s, simply report
to others either his signal s or his resulting posterior beliefs P (y|s) calculated according to
Bayes’ rule P (y|s) ∝ P (s|y)π(y). A real human’s report, however, may be distorted in two
ways. First, a real human may have incentives that do not always and exactly favor honesty.
Second, humans do not always take the action that is exactly best according their incentives.

To model these two distortions, let us first assume that observers know the exact value of
σ2, but not the exact signal value s. So the agent can choose a value of s′ to report instead of
nature’s actual signal s. Second, assume observers will eventually know the exact parameter
value y, call it y∗, and will reward the agent for having reported a signal s′ that assigns a
high probability, P (y∗|s′), to the actual2 observed value y∗.

Specifically, the agent’s utility from reporting s′ is

U(s′, b) = b s′ + ln(P (y∗|s′)).

So the agent’s payoff is the sum of a logarithmic scoring rule term log(P (y∗|s′)), which by
itself would induce an honest report s′ = s (Good, 1952; Winkler, 1969), and a distorting
bias term b s′, which reduces honesty. The value of bias parameter b is known only to the
agent; observers know only that bias b is drawn from a normal prior distribution λ(b) given
by b = b̄ + η, with η ∼ N(0, θ2).

Third, we assume the agent’s actions cannot be predicted exactly from knowing signal
s and his bias b. Instead, he has a higher chance of taking actions that give him a higher
expected payoff, as in

P (s′|s, b) ∝ exp(E[U(s′, b)|s, b]/r),

where r describes the agent’s degree of irrationality. This is the “quantal response” behav-
ioral assumption now popular in game theory (McKelvey & Palfrey, 1995). As r → 0, the

1The distribution over x must cut off at some lower limit x, but we assume this cutoff is well below the
“extraordinary” values we are considering.

2Since the probability of any exact value y is zero, imagine the range of possible y is broken into a finite
number of very small ranges of width dy.
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agent is almost certain to take the exactly optimal action, but with larger r the more the
agent will deviate more from this optimum.

Just as the agent can use Bayes’ rule to turn a signal distribution P (s|y) into a posterior
P (y|s), observers who hear the agent’s report s′ can treat it as a signal of nature’s signal s,
and hence of the parameter y, by computing

P (s′|s) =
∫

P (s′|s, b)λ(b) db,

P (s′|y) =
∫

P (s′|s)P (s|y) ds.

Observers can then turn this signal distribution P (s′|y) into a posterior P (y|s′).
Now consider a chain of N agents, each reporting to the next. Nature chooses a signal s0

about y, and then each agent i observes a signal report si−1 chosen by the previous agent.
Each agent can have differing values for b̄i, θi, ri, as long as these values are commonly known.
An observer of any signal sn can compute a posterior via

P (y|sn) ∝ π(y)
∫

P (s0|y)
n∏

i=1

P (si|si−1)
n−1∏
i=0

dsi.

If all agents were perfectly honest and rational, with all θi = ri = 0, then we would have
sN = s0 and extraordinary claims sN at the end of the chain could be valid extraordinary
evidence of an extraordinary signal s0. But how much bias and irrationality, across how
long a chain, does it take until extraordinary end claims sN say little about whether s0 is
extraordinary?

Solution

Using Bayes’ rule, P (y|s) ∝ P (s|y)π(y), and completing the square gives us y ∼ P (y|s) =
N(z, σ2), where the median and mean y value is

z = s − βσ2.

The median x is exp(z), while the mean x is exp(s + σ2(0.5 − β)).
The correction βσ2 in the mean z accounts for the fact that high values of y are unlikely,

making high signals s likely to result instead from unusually positive errors ε. The fact that
it is σ2 in this correction, and not σ, implies that there are two very different regimes. When
βσ � 1, the correction is only a small fraction of σ, and matters little. But when βσ � 1,
the correction is much larger than σ, and negates much of the impact of an apparently
“extraordinary” signal s.

Since P (y|s) is a normal distribution, its logarithm is quadratic, making utility U(s′, b) a
quadratic function of s′. Given a normal distribution, the expectation of a quadratic function
is also quadratic, and so up to a constant we have
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E[U(s′, b)|s, b] = −
(s′ − ŝ)2

2σ2
,

where ŝ ≡ s + bσ2. The quantal response assumption P (s′|s, b) ∝ exp(E[U(s′, b)|s]/r) ex-
ponentiates this quadratic, so that behavior is normally distributed as s′ = ŝ + ε where
ε ∼ N(0, rσ2). From the point of view of an observer, we can substitute and get

s′ = y + ε + (b̄ + η)σ2 + ε,

giving s̄′ ≡ E[s′] = y + b̄σ2, and E[(s′ − s̄′)2] = σ2(1 + r + θ2). Note that mean bias b̄ can be
completely corrected for, and does not influence the variance of s′.

For N chained agents, report sn is distributed as P (sn|y) = N(y + b̄nσ2

n−1
, σ2

n), where

σ2

n = σ2

0

n∏
i=1

(1 + ri + θ2

i )

and σ0 is the noise in nature’s signal s0 of y. Our posterior on y after report sN should be

P (y|sN) = N(sN − (β + b̄N)σ2

N , σ2

N).

Notice that the total error variance here goes as a product of independent error variances. In
many systems total variance goes as only the sum of the variances of independence sources.

Example

To illustrate, imagine a type of disaster where the number of deaths x was distributed as
P (x > x̂) ∝ x̂−1 (Thus3 β = 1.) Large disasters of this type would cause as much damage
on average as small ones, and so be important to consider.

Imagine that in truth an upcoming disaster would, if not prevented, be capable of killing
x = 6E9 (≡ 6 × 109) humans, i.e., all six billion of us. And imagine that John receives a
(log-normally distributed) signal from nature about this upcoming disaster, a signal John
knows has an error of about one order of magnitude. That is, 68% of the time nature’s
signal s will fall in the one standard deviation range (SR) of [0.1x, 10x] = [6E8, 6E10]. (So
σ = ln(10).) Let us continue to track a SR of outcomes, within which reality lies 68% of the
time.

After applying Bayes rule, the SR for the best median estimate of deaths based on
nature’s signal is [3E6, 3E8]. Based on this, we expect John to underestimate the harm.
Nevertheless, John clearly has extraordinary evidence, which would justify an extraordinary
claim; this disaster is well worth investigating, to see if prevention is possible.

3Many kinds of disasters do seem to follow such a power law. For tornados and terrorist attacks β = 1.4,
while for earthquakes and wars β = 0.41 (Hanson, 2007a).
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John will report to Mary. John will in effect forecast a probability distribution over
deaths, and be rewarded for assigning a high probability to the actual number of deaths.4

John, however, also has an incentive to exaggerate or downplay this disaster. Mary does
not know John’s exact bias incentive. But Mary does knows that 68% of the time John has
more than three times as much to gain by raising the probability he assigns to what actually
happens by 1%, as he might gain from raising or lowering his stated median estimate of x
by 1%. (So θ = 1/3.)

John has incentives that reward him, and he tries to choose the report that gives him the
greatest expected reward. But John does not alway choose well. If one report would assign
1% more probability to what actually happens than another report, then John is 9% more
likely to choose the first (better) report. (So r = 1/9.) These two sources of error, a bias
incentive and choice errors, each add about 5% to the noise in John’s report; eliminating
either source while doubling the other gives about the same effect.

The net result is that John’s report has 10% more noise than the signal nature gave him.
While nature’s signal to John had a SR of [0.1x, 10x], the signal that is John’s report to
Mary has a SR of [0.079x, 12.7x]. And while the SR of the median deaths estimate based
on nature’s signal is [3E6, 3E8], the same SR given John’s report is [7.3E5, 1.2E8]. This is
somewhat muted, but still reasonably extraordinary evidence, and pretty big news.

Imagine that Mary cannot take relevant action directly. Instead, imagine a reporting
chain of John to Mary to Fred to Lisa to Bill to Pam to Joe, where only Joe can make a
relevant decision. So between Joe and nature is a chain of seven people, each reporting to
the next. Imagine further that each is exactly as noisy as John, and that everyone knows all
the noise levels.

Given these assumptions, Pam’s report is about twice as noisy as nature’s signal. While
nature’s signal to John had a SR of [0.1x, 10x], the signal that is Pam’s report to Joe has a SR
of [0.0099x, 101x]. And while the SR of the median deaths estimate based on nature’s signal
was [3E6, 3E8], the same SR given Pam’s report is the much less extraordinary [0.032, 330].

Even Pam’s report should seem noteworthy, however, as the SR of mean deaths estimate
is [1.5E4, 6.3E7]. But if there were fourteen people in the reporting chain, or if each person
were twice as noisy, even the SR of mean deaths estimate would be the quite negligible
[1E-13, 1.5E-5]; even a two standard deviation positive signal would only give a mean estimate
of 0.16 deaths. The initially extraordinary evidence would have been completely washed out
in the noise of human error in the reporting chain.

Conclusion

Extraordinary claims do require extraordinary evidence, but on uninteresting topics we can
usually count on people to reliably communicate their exposure to a priori unlikely evidence.
On interesting topics, however, people become less reliable; they often have interests in ex-
aggerating or downplaying the implications of their evidence, and their actions often deviate

4Like most disaster experts, John in effect “bets on death.”
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from their interests.
We have considered a simple model of noisy humans reporting extraordinary evidence.

When a person’s noise is low, his extraordinary claim is extraordinary evidence, but when
his noise is high, extraordinary claims are more likely to be due to unusual noise than
unusual truth; the extraordinary evidence is washed out. Relatively low noise people who are
organized into a reporting chain are equivalent to a single high noise person; such reporting
chains are simply not capable of communicating extraordinary evidence.

This model has only considered two sources of noise in communication. Other possible
complications include uncertainty about error variances, thicker than Gaussian error tails,
a lack of available incentives tied to actual outcomes, lower bounds to parameter distribu-
tions, and upper bounds to interesting values. Models that included these noise sources
would presumably result in even noisier communication, and thus a faster washing out of
extraordinary evidence.

On the other hand, perhaps we need only the first few levels of reporting need discretion
to adapt a claim to context; reports at further levels could be something like “Fred said that
our best estimate of disaster deaths is one million.” Another alternative might be to use
prediction markets to shorten reporting chains; the person who saw nature’s signal trades in
the market, anyone who wants to correct that market price for context does so via trades,
and everyone else is referred to the market price (Hanson, 2007b).
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