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Abstract

Since utilities and probabilities jointly determine choices, event-dependent utilities
complicate the elicitation of subjective event probabilities. However, for the usual pur-
pose of obtaining the information embodied in agent beliefs, it is sufficient to elicit
objective probabilities, i.e., probabilities obtained by updating a known common prior
with that agent’s further information. Bayesians who play a Nash equilibrium of a
certain insurance game before they obtain relevant information will afterward act re-
garding lottery ticket payments as if they had event-independent risk-neutral utility
and a known common prior. Proper scoring rules paid in lottery tickets can then elicit
objective probabilities.

Introduction

Proper scoring rules and related methods are widely used to elicit event probabilities. Such
probability elicitation is practiced in weather forecasting (Murphy & Winkler, 1984), eco-
nomic forecasting (O’Carroll, 1977), risk analysis (DeWispelare, Herren, & Clemen, 1995),
and the engineering of intelligent computer systems (Druzdzel & van der Gaag, 1995). The
fact that choices are determined jointly by both utilities and subjective probabilities, how-
ever, makes such elicitation problematic. For example, if one knows only that an agent is a
Bayesian, but cannot further constraint his utilities or probabilities, then it seems impossible
to infer this agent’s subjective probabilities from his actions (Kadane & Winkler, 1988).

When further constraints are available, this problem can be overcome. For example,
simple scoring rules elicit subjective probabilities when utility is state-independent and risk-
neutral (Savage, 1971). When utility and endowments are state-independent but utility is
not risk-neutral, it is sufficient to use scoring rules that pay in lottery tickets (Smith, 1965;
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Savage, 1971). When endowments but not utilities are event-dependent, endowments can be
inferred by comparing local coefficients of absolute risk aversion, when this varies (Jaffray
& Karni, 1999). And when utilities approach known upper and lower bounds, lotteries with
extreme consequences can elicit subjective probabilities even for event-dependent utility
(Karni, 1999; Jaffray & Karni, 1999). Unfortunately, the assumptions required for these
solutions do not seem to apply to many contexts where probabilities are elicited.

In most applications of probability elicitation, however, including those listed above,
the purpose is not to obtain someone’s subjective probabilities, but rather to elicit the
information embodied in his probabilities. We query a weather forecaster, for example, to
find out what he knows about whether it will rain. We query a loan evaluator to find out
what he knows about whether a loan will default. And we query an expert witness at a trial
to find out what he knows about whether an accused person is guilty.

In such cases, we should want to minimize the influence of unknown variations in the
prior beliefs and utilities of such an agent on the probabilities we elicit from him. We should
thus want to elicit objective probabilities, i.e., the probabilities that an expert would hold
had he started with a certain known prior, and then updated his beliefs based on his expert
information. If we elicit sufficiently detailed objective probabilities, then we can directly
infer the information this person has acquired since the known common prior.

For example, weather forecasters largely agree on their predictions about the weather a
year in advance. This far in advance they basically revert to base rate frequencies; such as
that the chance of rain on any given spring day in a certain city is about 25%. Then as the
date in question approaches, a weather forecaster’s estimate of the chance of rain typically
changes as he acquires specific information and analyzes. Similarly, loan evaluators revert
to base rates in evaluating the chance that an unknown 42 year old white female who makes
$40,000 a year will repay her home loan, and polygraph experts also revert to base rates to
evaluate the chance that any random statement in a polygraph test is a lie. These experts
then typically change their estimates as they learn more about individual cases.

When we query weather forecasters, loan evaluators, or polygraph experts, what we
mostly want is the information that induced them to change their estimates, rather than
their disagreements about base rates. If one polygraph expert believes that women tend
to lie more often, relative to what other polygraph experts believe, we usually prefer that
his expert court testimony in a particular case not be influenced by this belief. We instead
prefer to learn about how much his beliefs changed, relative to his base rate estimates, due
to what he learned about a particular case. This change should be a reliable indication of
his new information, and this change is what we learn when we elicit objective probabilities.

One approach to eliciting objective probabilities combines scoring rules and insurance
markets. Insurance markets have long been known to induce equality of marginal rates
of substitution across events (Debreu, 1959; Kadane & Winkler, 1988). Such an equality
implies that agents will immediately afterward act as if they had a common prior and event-
independent utility, at least regarding very small changes in event-dependent assets. So
if an agent’s event utilities do not change as he acquires new information, he should then
respond to scoring rules with infinitesimal payments as if he had updated the common prior
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with his new information. Thus objective probabilities can be elicited by having agents first
participate in an insurance market, and then later respond to an infinitesimal scoring rule.

Infinitesimal scoring rules have serious problems, however. Any small reason why report-
ing one probability distribution is easier than reporting another distribution can overwhelm
the scoring rule incentives. For example, if there is a default distribution, and agents must
make a fixed finite effort to change this default, then with a weak enough scoring rule agents
should just leave the default unchanged, regardless of what they believe.

Larger scoring rule payments are possible if state-dependent marginal utilities are equal-
ized regarding lottery tickets, since changes in lottery ticket holdings do not change one’s
marginal utilities across states. However, an insurance market equilibrium will not typically
create such equalization, because the optimal number of lottery tickets is typically extreme;
agents typically either want to be sure they win the lottery, or to be sure they do not win.
To induce intermediate choices, we can follow the example of mixed strategy equilibria of
simple two player games. In such equilibria, each player is indifferent between his possible
mixtures, and yet still chooses the equilibrium mixture that makes the other player indif-
ferent. Similarly, we can create an insurance game where each agent is paired with another
agent, and where each agent chooses an allocation of lottery tickets that makes the other
agent indifferent to his lottery allocation, via equalized marginal utilities.

This paper introduces such a procedure for eliciting objective probabilities, a procedure
that combines scoring rules, lotteries, early insurance, and Nash equilibria of a certain game.
This procedure goes as follows. First, a set of relevant events are chosen, and then well before
some risk-averse agents acquire case specific information, they play a certain game. This
game allocates two kinds of event-contingent assets: event-contingent cash, such as “Pays $1
if rain here Tuesday,” and event-contingent lottery tickets, such as “Pays one lottery ticket
if rain here Tuesday.” Given a budget constraint and some equilibrium prices for event-
contingent lottery tickets, each expert chooses his ideal mixture of event-contingent lottery
tickets. Simultaneously, each agent’s event-contingent cash is determined by the lottery
ticket choices of some other random agent.

Similar to the way that some games only have mixed strategy Nash equilibria, in all
Nash equilibria of this game, every agent chooses an intermediate amount of every kind
of state-contingent lottery ticket. And this implies that, immediately after playing this
game, all agents respond to payoffs denominated in state-dependent lottery tickets as if
they had risk-neutral event-independent utility, and had the same known beliefs about event
probabilities. Furthermore, if certain utility ratios do not change as agents then acquire
new information about these events, agents will still respond to such payoffs as if they had
risk-neutral event-independent utility. If so, then agents will later report their objective
probabilities in response to a proper scoring rule paid in event-dependent lottery tickets.

For example, weather forecasters might anticipate regularly making forecasts about whether
it will rain in a certain city, each day making a forecast for each of the next five days. A year
in advance, these forecasters might participate in a special insurance market, where they
acquire cash and lottery tickets that pay depending on whether it rains on particular combi-
nations of days. After this insurance market reached equilibrium and closed, each forecaster
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should be indifferent to buying more or less of each kind of event-dependent lottery ticket.
For example, a forecaster who beforehand prefered more to win the lottery if it rained on his
birthday than if it did not should now no longer care. If during the next year this forecaster
does not acquire new information which changes how much he cares, such as learning of
special birthday visitors, then he should still not care in the few days before his birthday,
when he makes forecasts in response to proper scoring rules that pay in lottery tickets. If
so, then his forecasts should be objective probabilities, describing the information he had
acquired in the previous year about rain on the day in question.

We will now review the logic of scoring rules, lottery ticket payments, early insurance, and
an lottery insurance game which induces honest reports of objective probabilities. Finally,
we consider some implementation issues.

Analysis

Consider a Bayesian principal concerned about her beliefs, represented by probabilities π̃i,
regarding a complete set I of disjoint events i (so that

∑
i∈I π̃i = 1). In order to better inform

her beliefs, this principal might consult one or more agents as experts, and ask them about
their beliefs. For example, imagine that a Bayesian expected-utility-maximizing agent had
previously honestly reported his beliefs to be πi 0, but now, after having acquired important
relevant information, honestly reports his beliefs to be πi t. In this case, the principal can
infer that the likelihood ratio of this agent’s new information was proportional to πi t/πi 0. So
if the principal was at first equally informed, and had initial beliefs π̃i 0 (and if all πi 0 > 0),
she could make her new beliefs embody this agent’s new information by setting

π̃i t =
π̃i 0(πi t/πi 0)∑

j∈I π̃j 0(πj t/πj 0)
.

To induce her agents to honestly report their beliefs, a principal might commit to pay
each agent a cash amount z according to a proper scoring rule (Savage, 1971) zi = si(�r).
Here zi is the cash payment if i turns out to be the actual event, ri is the probability reported
by an agent for the event i, and �r = {ri}i∈I is the full report. When the si constitute a
proper scoring rule1, an agent who sets his reports ri to maximize his expected monetary
payoff will honestly report ri = πi. That is, if ∆ is the set of all probability distributions
over the events I, then

�π = argmax�r∈∆

∑
i∈I

πisi(�r).

For example, this condition holds for a logarithmic scoring rule si = ai + b log(ri) (Good,

1952), for a spherical scoring rule si = ai + b ri/
√∑

j∈I r2
j , and for a quadratic scoring rule

si = ai − b
∑

j∈I(1ij − ri)
2, where 1ij = 1 when i = j and 0 otherwise (Brier, 1950). Scoring

1For a scoring rule that is not proper, other reports as well may maximize an agent’s expected payoff.
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rules can also give agents incentives to acquire information they would not otherwise possess
(Clemen, 2002).

An agent who was not risk neutral, however, would not maximize his expected payoff z,
but rather an expected utility u(z), where u′′(z) �= 0. In this situation the principal might
use a lottery scoring rule, i.e. a proper scoring rule that pays in lottery tickets instead of
cash (Smith, 1965; Savage, 1971). If e is an agent’s initial cash endowment, L is the amount
he could win in the lottery, and x denotes his chance of winning the lottery (i.e., his number
of lottery tickets times the chance each has of winning), then if the principal paid xi = si(�r)
(and if2 si(�r) ∈ [0, 1] and he has no other way to win this lottery), then an agent who set
his report ri to maximize expected utility

∑
i∈I

πi[(1 − xi)u(e) + xiu(e + L)] = u(e) + [u(L + e) − u(e)]
∑
i∈I

πixi

should again honestly report ri = πi.
A lottery scoring rule is not enough, however, if an agent has event-dependent cash

endowments ei or utilities ui(e). Such an agent will make reports to maximize

∑
i∈I

πi[(1 − xi)ui(ei) + xiui(ei + L)] =
∑
i∈I

πiui(ei) +
∑
i∈I

πi∆ui(ei)xi, (1)

where ∆ui(e) = ui(e + L) − ui(e). That is, such an agent will report as if he had beliefs
proportional to πi∆ui(ei). A principal who was ignorant about an agent’s utility steps ∆ui,
or about his prior, would have difficulty inferring that agent’s information from his reports
(Kadane & Winkler, 1988).

Early insurance can mitigate problems caused by ignorance of agent priors and utilities.
Assume that at some previous point in time, a set Λ of agents participate in a competitive
insurance market, with prices that agents take as fixed. That is, at prices pi (where

∑
i∈I pi =

1) each agent adjusts his endowment ei with hedges3 hi, so that his cash given event i becomes
zi = ei + hi. Such an agent would then maximize

∑
i∈I

πiui(ei + hi) given
∑

i

pihi = 0.

Assuming an interior choice, each risk-averse (u′′
i < 0, u′

i > 0) agent would then hold zi

satisfying

πi u
′
i(zi) = λ pi,

where λ =
∑

i∈I πiu
′
i(zi). For very small asset changes ∆zi, such an agent would then

maximize

2This cannot hold for all �r under the logarithmic scoring rule, but can under the quadratic and spherical
scoring rules.

3Presumably in the aggregate,
∑

α∈Λ hα i = 0.
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∑
i∈I

πiui(zi + ∆zi) ≈
∑
i∈I

πiui(zi) +
∑
i∈I

πiu
′
i(zi)∆zi =

∑
i∈I

πiui(zi) + λ
∑
i∈I

pi∆zi.

Thus in response to an infinitesimal scoring rule payment ∆zi = si(�r) presented soon after
early insurance, each agent should report ri ≈ pi, with the approximation exact in the limit
of zero asset changes ∆zi. Regarding such infinitesimal rules, agents thus act immediately
after early insurance as if they had a common prior pi. And an agent who later acquired
new information about the events i, but had no change in his assets zi, should report as if
he had updated this common prior pi based on his new information. (More on this below.)

Unfortunately, infinitesimal payments have serious practical problems. Not only do they
eliminate the incentive for agents to acquire information, but they completely fail if there
are any finite differential reporting costs. For example, if there is a default report �r, so
that agents must exert finite effort to change this default report, then if the scoring rule
payments are small enough, agents will always make the default report, regardless of what
they believe. Fortunately, the insurance approach can be combined with a lottery approach
to allow larger payments.

Consider a lottery scoring rule which pays an agent α in (state-contingent) lottery tickets
xα i. It turns out to be sufficient to adjust this agent’s assets zα i until they satisfy

πα i ∆uα i(zα i) = λα pi, (2)

where λα =
∑

i∈I πα i∆uα i(zα i).

Lemma 1 Agents who satisfy equation 2 respond to a lottery scoring rule with �r = �p.

Proof. According to equation 1, equation 2 induces agent α to make reports to maximize

∑
i∈I

πα i ∆uα i(zα i)xα i = λα

∑
i∈I

pixα i,

and hence to respond to a scoring rule xα i = si(�rα) with rα i = pi. QED.

Lemma 2 If Bayesian α satisfied equation 2 at t = 0, and then at time t had new beliefs
πα i t but the same utility steps ∆uα i(zα i), then this agent should then respond to a lottery
scoring rule as if he had updated the prior pi with his new information.

Proof. According to equation 2, he at first reports

pα i0 = pi =
πα i 0∆uα i(zα i)∑

j∈I πα j 0∆uα j(zα j)

and by assumption he later substitutes πα i t for πα i 0 and so reports according to

pα i t =
πα i t∆uα i(zα i)∑

j∈I πα j t∆uαj(zα j)
=

pi(πα i t/πα i 0)∑
j∈I pj(πα j t/πα j 0)

.
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Since πα i t/πα i 0 is proportional to the likelihood ratio for agent α’s new information, this is
just as if agent α had updated the prior pi based on his new information. QED.

Adjustments satisfying equation 2 can arise if the agents play a certain early insurance
game. Let agents be paired as partners β, γ and let each agent’s assets depend on the lottery
tickets of his partner according to

zβ i = f(xγ i, zβ i, z̄β i)

zγ i = f(1 − xβ i, zγ i, z̄γ i, ),

where zα i < z̄α i,
f(x, z, z̄) = z + (z̄ − z)g(xβ i),

and g(x) is continuous, non-decreasing on [0, 1], strictly increasing at x = 1/2, g(x) = 0 for
x ≤ D ∈ (0, 1/2), and g(x) = 1 for x ≥ 1 − D. In the lottery insurance game, the above
equations apply, each agent faces a budget constraint

∑
i∈I

pi xα i = 1/2,

and each agent chooses his favorite allocation of lottery tickets xα i ∈ [0, 1].
Each partner β who plays this lottery insurance game should seek to choose the xβ i ∈ [0, 1]

to maximize

∑
i∈I

πβ i∆uβ i(f(xγ i, zβ i, z̄β i))xβ i (3)

given his budget constraint (and similarly for partners γ). Let µα be the Lagrange multiplier
of the budget constraint in such an optimization, and let us define marginal value of an agent
in a state as

mα i(zα i) = πα i ∆uα i(zα i)/pi.

Risk-aversion implies m′
α i < 0, and the Kuhn-Tucker conditions of such optimizations say

that unless mα i(zα i) = µα, we must have either mα i(zα i) > µα and xα i = 1, or mα i(zα i) <
µα and xα i = 0. That is, an agent buys as many tickets as possible for states with above the
critical marginal value, and buys no tickets at all for states with below the critical marginal
value. Equation 2, the equation we want satisfied, can be written as mα i(zα i) = λα for all
i, i.e., all states have the same marginal value. Let us say that the critical marginal value is
interior for state i whenever

mα i(zα i) > µα > mα i(z̄α i),

that it is high when µα ≥ mα i(zα i), and low when mα i(z̄α i) ≥ µα. It turns out to be
sufficient to have interior critical marginal values.4

4Note that if during the lottery insurance game an agent anticipates later making one or more lottery
scoring rule reports, he should realize that his final xα i will not equal the xα i he chooses in the game. This
should not change his equilibrium game choices, however, if such choices are interior xα i ∈ [0, 1], and after
the later change in lottery tickets he still satisfies xα i ∈ [0, 1].
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Lemma 3 For risk-averse partners in a Nash equilibrium of the lottery insurance game, if
these agents have interior critical marginal values for state i, then equation 2 is satisfied for
i, with xα i ∈ [D, 1 − D].

Proof. Let z∗α i be defined by µα = mα i(z
∗
α i), which is unique by risk-aversion. The

assumption mα i(zα i) > µα > mα i(z̄α i) can then be written as zα i < z∗α i < z̄α i. Because
of this, neither xβ i = 0 nor xβ i = 1 can be equilibria. If xβ i = 0, then zγ i = z̄γ i > z∗γ i,
which induces γ to choose xγ i = 0, which implies zβ i = zβ i < z∗β i, which induces β to choose
xβ i = 1, which is a contradiction. Similar contradictions follow from xβ i = 1, and from
xγ i = 0 or 1. But if xα i ∈ (0, 1) then by the Kuhn-Tucker conditions mα i(zα i) = µα. Thus
equation 2 must be satisfied for α = β, γ. Since xβ i, xγ i �= 0, 1, the constraint that they be
in [D, 1 − D] follows directly from g(x) = 0 for x ≤ D > 0, and g(x) = 1 for x ≥ 1 − D.
QED.

Note that the logic of this equilibrium is similar to that of simple two-player two-action
games, such as the matching-penny game. In such simple games, each player chooses a prob-
ability distribution over actions that makes the other player indifferent between his actions,
and thus willing himself to choose a non-extreme probability distribution. In this lottery
insurance game, choosing lottery ticket holdings xα i is similar to choosing a probability dis-
tribution, in that agents will want to choose extremal holdings unless they are indifferent
between all values. The functions relating zβ i to xγ i and zγ i to xβ i have been chosen so that
each player will induce his partner to become indifferent regarding lottery ticket holdings.

To ensure interior critical marginal values, we need to restrict the values zα i, z̄α i. Let us
say that an insurance game is sufficiently broad for paired agents β, γ, it is known that for
both partners α = β, γ and all states i, j, k,

mα i(zα i) > mα j(f(1/2, zα j, z̄α j)) > mα k(z̄α k).

Lemma 4 If a lottery insurance game is sufficiently broad, then for risk-averse agents its
Nash equilibria have interior critical marginal values for all states i.

Proof. For each agent α and state i, the critical marginal value can be high, interior, or
low. If we define Mα = minj mα j(zα j) and Mα = maxj mα j(z̄α j), then sufficiently broad
games satisfy Mα > Mα, and there are three cases overall to consider for each agent. The
critical marginal value is either high overall µα ≥ Mα, interior overall Mα > µα > Mα, or
low overall Mα ≥ µα. If an agent’s marginal critical value is high overall, then for each state
it is high or interior. If it is low overall, for each state it is low or interior, and if it is interior
overall, then it is interior for all states. To prove that only this last case occurs, we show
that in all other cases some agent violates his budget constraint.

If an agent’s marginal critical value is high overall, then by the definition of sufficiently
broad, µα > mα i(f(1/2, zα i, z̄α i)) for every i. If partner β in a pair is high overall, then
xγ i = 1 or xγ i < 1/2, because xγ i ∈ (0, 1) implies µα = mα i(f(xγ i, zα i, z̄α i)), m is decreasing,
and g is non-decreasing. Similarly, if β is low overall, then xγ i = 0 or xγ i > 1/2, if γ is high
overall xβ i = 0 or xβ i > 1/2, and if γ is low overall, xβ i = 1 or xβ i < 1/2.
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With two partners β, γ, there are nine possible combinations of the two critical marginal
values being high overall, interior overall or low overall. There are two classes of combinations
to consider, when one agent is interior overall, and when neither agent is interior overall.
Situations within each class are very similar.

As an example of the first class, consider the situation where β is high overall and γ
is interior overall. In this situation, for some state i either both β and γ are interior, or
β is high while γ is interior. In the former case, xγ i ∈ (0, 1) implying xγ i < 1/2, and in
the latter case µβ > mβ j(zβ i) implying xβ i = 0 implying µγ > mβ j(zβ i) implying xγ i = 0.
Thus xγ i < 1/2 for all states i. But then

∑
i∈I pi xγ i < 1/2, and so γ’s budget constraint is

violated. A similar construction shows that in other situations where one agent is interior
overall, this agent’s budget constraint is violated if his partner is not interior overall.

As an example of the class of situations where neither agent is interior overall, consider
the situation where β is high overall and γ is high overall. In this situation, for some state
i both β and γ are interior, or β is high while γ is interior, or γ is high while β is interior,
or both β and γ are high. As before, when both are interior, xγ i < 1/2, and when β is
high xγ i = 0. In addition, when both are high or when only γ is high, µγ > mγ j(zγ i)
implying xγ i = 0. Thus again xγ i < 1/2 for all states i, violating γ’s budget constraint. A
similar construction shows that in other situations where neither partner is interior overall,
one partner’s budget constraint is violated. QED.

Lemma’s 1-4 together imply the main result of this paper. Let xα i t be agent α’s lottery
tickets at time t, after responding to a lottery scoring rule, and let xα i 0 be his lottery ticket
holdings before responding to this lottery scoring rule. Thus ∆xα i = xα i t − xα i 0 is the
transfer of lottery tickets due to the lottery scoring rule.

Theorem 1 After a Nash equilibrium of a sufficiently-broad lottery insurance game, and
assuming risk-averse Bayesians whose utility steps do not change before responding to lottery
scoring rules ∆xα i = si(�rα) ∈ [−D, D], such agents respond as if they had event-independent
risk-neutral utility, and as if they had updated a known common prior with their further
private information. (I.e., they maximize

∑
i∈I pα i t∆xα i where pα i t updates the insurance

price prior pi with an agent α’s new information up to time t.)

Proof. Assuming risk-averse agents, Lemma 4 shows that if a lottery insurance game is
sufficiently broad, its Nash equilibria have interior critical marginal values for all states i, and
Lemma 3 shows that this implies equation 2 is satisfied afterward, with xα i ∈ [D, 1−D]. A
lottery scoring rule with ∆xα i = si(�rα) ∈ [−D, D] then produces final xα i t ∈ [0, 1]. Lemma 1
shows that, given equation 2, agents respond to a lottery scoring rule with the insurance
prices pi, and Lemma 2 shows that if a Bayesian later acquired new information, but had
not changes in his event utility steps, he would then respond to a lottery scoring rule as if
he had updated the insurance price prior pi with his new information. QED.

Implementation Issues

Let us now consider some more practical implementation issues with lottery insurance games.
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First consider that a Nash equilibrium is not a plausible outcome if agents interact only
once, and are ignorant of the utility functions of the agents that they are paired with. In
this case we might more plausibly expect a Bayes-Nash equilibrium, where agents average
over their beliefs about the various possible utility functions they might encounter. A Nash
equilibrium might more plausibly result, however, if agent β was continuously told the current
tentative values of his zβ i, computed from the current tentative value of his partner’s xγ i, and
could adjust his tentative xβ i choices in response to changes in zβ i resulting from changes
in xγ i, and similarly for partner γ. If a situation were reached where no agent wanted
to change his xα i values, and if those were the values implemented, that would constitute
a Nash equilibrium. (Such repeated interaction is a common technique for seeking a Nash
Equilibrium in the face of agent uncertainty (Kalai & Ledyard, 1998; Kalai & Lehrer, 1993).)

A Nash equilibrium would of course not obtain if agents colluded with one another, jointly
agreeing to choices of xα i and side payments. Agents do not need to be told which other
agents they are paired with, however, or even which half of the pair they are. The more
agents there are, the harder it should be for each agent to discover and collude with his
counterpart. (A large number of agents would also make it easier to minimize the per-agent
cost of covering the excess demand in lottery tickets due to errors in choosing appropriate
insurance prices pi.)

Voluntary participation by all agents should be possible via appropriate choices of assets
zα i, z̄α i. For example, if by not participating agent α would receive z̃α i, then his participation
seems ensured if zα i ≥ z̃α i for all i.

Our assumption that the utility steps ∆uα i(zα i) do not change clearly holds if agents
only get information about the events I. If, however, agents can get information about a
finer partition of events Ω, then the question is whether the utility ratios

∆uα i

∆uα j
=

∑
ω∈Ω πα(ω| i)∆uαω(zα ω)∑
ω∈Ω πα(ω| j)∆uαω(zα ω)

,

remain constant in the face of such information. For an agent who is insured regarding a
sufficient number of events, these ratios should not change. And information that agents
may receive that is uncorrelated with the events I is irrelevant. But if agents could plausibly
receive information that would change these ratios, then it would be desirable to refine the
events I into more detailed events until this constant ratio condition holds for the new events.
On the other hand, the insurance market events can be a coarsening of the partition I if it
is known that this does not prevent exchanges. That is, kinds of insurance for which there
is no demand need not be offered.

Note that having too coarse a set of events I can also make it difficult to infer an agent’s
information from the likelihood ratios πα i t/πα i 0, which are revealed by a lottery scoring rule
after an lottery insurance game. And of course the fact that people are not Bayesians can
also make it difficult to infer their information via a lottery insurance game.

There are clearly many practical difficulties which might prevent lottery insurance games
from exactly or always eliciting objective probabilities. Probability elicitation is a common
practice, however, even using mechanisms which in theory require even stronger assumptions
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to work than lottery insurance games. So even if lottery insurance games functioned with a
substantial error rate, they might still be attractive if they has a substantially smaller error
rate than other probability elicitation mechanisms.

Conclusion

The usual reason to elicit probabilities is to obtain information that experts have acquired.
This purpose can be served by eliciting each agent’s objective probabilities, i.e., the beliefs
he would have if he had updated a known common prior with their further information.
Simple insurance can achieve this result for infinitesimal scoring rules payments, and this
paper has shown how a more complex approach, lottery insurance games, can achieve this
result for substantial lottery ticket payments.

That is, the following approach can induce Bayesian expected-utility-maximizing agents
to make honest scoring rule reports as if they had updated a common and known prior
with their further information. First a principal chooses a set of events of interest, and
supplements these events with other events on correlated risks. The principal also chooses
a wide enough and high enough range of state-dependent agent cash levels for each agent.
Before the agents acquire their differing relevant information on these events, the agents play
a lottery insurance game, using common known prices, and come to an equilibrium where no
agent wants to change his lottery ticket holdings, given the choices of the other agents. After
this, and after acquiring new relevant information, unless an agent acquires information that
changes his value of winning the lottery given different events, he should respond to a scoring
rule that pays in lottery tickets as if he had updated the insurance price prior with his new
information.
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