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Abstract

We consider the case where a large number
of human and machine agents collaborate to
estimate a joint distribution on events. Some
of these agents may be statistical learners
processing large volumes of data, but typi-
cally any one agent will have access to only
some of the data sources. Prediction mar-
kets have proven to be an accurate and ro-
bust mechanism for aggregating such esti-
mates (Chen and Pennock, 2010), (Barbu
and Lay, 2011). Agents in a prediction mar-
ket trade on futures in events of interest.
Their trades collectively determine a prob-
ability distribution. Crucially, limited trad-
ing resources force agents to prioritize ad-
justments to the market distribution. Op-
timally allocating these resources is a chal-
lenging problem. In the economic spirit of
specialization, we expect prediction markets
to do even better if agents can focus on be-
liefs, and hand o↵ those beliefs to an opti-
mal trading algorithm. Kelly (1956) solved
the optimal investment problem for single-
asset markets. In previous work, we devel-
oped e�cient methods to update both the
joint probability distribution and user’s as-
sets for the graphical model based prediction
market (Sun et al., 2012). In this paper we
create a Kelly rule automated trader for com-
binatorial prediction markets and evaluate its
performance by numerical simulation.

1 INTRODUCTION

There was a time when “big” data meant too big to
fit into memory. As memory capacity expanded, what
was once big became small, and “big” grew ever big-
ger. Then came cloud computing and the explosion of

“big” data to a planetary scale. Whatever the scale
of “big,” a learner faced with big data is by defini-
tion forced to subsample, use incremental methods, or
otherwise specialize. Humans are no strangers to spe-
cialization: scientific knowledge alone has exceeded the
capacity of any single head for at least four centuries.
In this paper we consider a mechanism for fusing the
e↵orts of many specialized agents attempting to learn
a joint probability space which is assumed to be larger
than any one of them can encompass. We seek a mech-
anism where agents contribute only where they have
expertise, and where each question gets the input of
multiple agents. As we discuss below, our mechanism
is a kind of prediction market. However, in contrast
to (Barbu and Lay, 2011), we wish our human and
machine agents to concentrate on their beliefs, not on
playing the market. Therefore we formulate and de-
velop a helper agent which translates partial beliefs
into near-optimal trades in a combinatorial market of
arbitrary size. We do not here actually apply it to a
big dataset.

It is well known that prediction accuracy increases as
more human and/or machine forecasters contribute to
a forecast (Solomono↵, 1978). While one approach is
to ask for and average forecasts from many individu-
als, an approach that often works better is to combine
forecasts through a prediction market (Chen and Pen-
nock, 2010; Barbu and Lay, 2011). In a market-maker
based prediction market, a consensus probability dis-
tribution is formed as individuals either edit probabil-
ities directly or trade in securities that pay o↵ con-
tingent on an event of interest. Combinatorial pre-
diction markets allow trading on any event that can
be specified as a combination of a base set of events.
However, explicitly representing the full joint distri-
bution is infeasible for markets with more than a few
base events. Tractable computation can be achieved
by using a factored representation (Sun et al., 2012).
Essentially, the probabilities being edited by users are
the parameters of the underlying graphical model rep-
resenting the joint distribution of events of interest. In



another words, prediction markets work as a crowd-
sourcing tool for learning model parameters from hu-
man or automated agents.

Prediction markets appear to achieve improved accu-
racy in part because individuals can focus on con-
tributing to questions about which they have the most
knowledge, and in part because individuals can learn
by watching the trades of others. However, one impor-
tant disadvantage of prediction markets is that users
must figure out how to translate their beliefs into
trades. That is, users must decide when to trade how
much, and whether to make a new o↵er or to accept an
existing o↵er. Prediction markets with market makers
can simplify this task, allowing users to focus on ac-
cepting existing o↵ers. Edit-based interfaces can fur-
ther simplify the user task, by having users browse for
existing estimates they think are mistaken, and then
specify new values they think are less mistaken.

However, even with these simplifications, participants
must think about resources as well as beliefs. For ex-
ample, if users just make edits whenever they notice
that market estimates di↵er from their beliefs, par-
ticipants are likely to quickly run out of available re-
sources, which will greatly limit their ability to make
further edits. To avoid this problem, users must try
to keep track of their best opportunities for trading
gains, and avoid or undo trades in other areas in order
to free up resources to support their best trades.

This problem is made worse in combinatorial predic-
tion markets. By allowing users to trade on any be-
liefs in a large space of combinations of some base set
of topics, combinatorial markets allow users to con-
tribute much more information, and to better divide
their labors. But the more possible trades there are,
the harder it becomes for users to know which of the
many possible trades to actually make.

Ideally, prediction market users could have a trading
tool available to help them manage this process of
translating beliefs into trades. Users would tell this
tool about their beliefs, and the tool would decide
when to trade how much. But how feasible is such
a tool? One di�culty is that optimal trades depend
in principle on expectations about future trading op-
portunities. A second di�culty is that users must not
only tell the tool about their current beliefs, they must
also tell the tool how to change such stated beliefs in
response to changes in market prices. That is, the
trading tool must learn from prices in some manner
analogous to the way the user would have learned from
such prices.

To make this problem manageable, we introduce four
simplifications. First, we set aside the problem of how
users can easily and e�ciently specify their current be-

liefs, and assume that a user has somehow specified a
full joint probability distribution over some set of vari-
ables. Second, we set aside the problem of guessing
future trading opportunities, by assuming that future
opportunities will be independent of current opportu-
nities. Third, we assume that a user can only accept
trade o↵ers made by a continuous market maker, and
cannot trade directly with other users. Fourth, we set
aside the problem of how a tool can learn from market
prices, by assuming that it would be su�cient for the
tool to optimize a simple utility function depending on
the user’s assets and market prices.

Given these assumptions, the prediction market trad-
ing tool design problem reduces to deciding what pre-
diction market trades to make any given moment,
given some user-specified joint probability distribution
over a set of variables for which there is a continuous
combinatorial market maker. It turns out that this
problem has largely been solved in the field of evolu-
tionary finance.

That is, if the question is how, given a set of beliefs, to
invest among a set of available assets to minimize one’s
chances of going broke, and maximize one’s chance
of eventually dominating other investors, the answer
has long been known. The answer is the “Kelly rule”
(Kelly, 1956), which invests in each category of as-
sets in proportion to its expected distant future frac-
tion of wealth, independent of the current price of
that category. When they compete with other trad-
ing rules, it has been shown that Kelly rule traders
eventually come to dominate (Lensberg and Schenk-
Hoppé, 2007).

In this paper we report on an implementation of such a
Kelly rule based trading tool in the context of a combi-
natorial prediction market with a continuous market
maker. Section 2 reviews the basics of such a com-
binatorial prediction market. Section 3 reviews the
basics of a Kelly rule and then describes how to apply
the Kelly rule in a combinatorial prediction market to
achieve automated trading. Section 4 reports on sim-
ulation tests of an implementation of the Kelly auto-
trader. Last, in Section 6 we summarize our work and
point to potentially promising future research oppor-
tunities.

2 COMBINATORIAL PREDICTION
MARKETS

In a prediction market, forecasters collaboratively
form a probability distribution by trading on assets
that pay o↵ contingent on the occurrence of relevant
events. In a logarithmic market scoring rule based
(LMSR-based) prediction market, a market maker of-



fers to buy and sell assets on any relevant events, vary-
ing its price exponentially with the quantity of assets
it sells. Tiny trades are fair bets at the consensus
probabilities (Hanson, 2003). Larger trades change
the consensus probabilities; we call such trades “ed-
its.” Suppose {z

i

, i = 1, · · · , n} is a set of n possible
outcomes for a relevant event, and prior to making a
trade, the user’s assets contingent on occurrence of z

i

are a

i

. Suppose the user makes an edit that changes
the current consensus probability from p

i

to x

i

. In
a LMSR-based market, as a result of the trade, the
user’s assets contingent on occurrence of z

i

will now
be a

i

+ b log2(
xi
pi
).

A combinatorial prediction market increases the ex-
pressivity of a traditional prediction market by allow-
ing trades on Boolean combinations of a base set of
events (e.g., “A and B”) or contingent events defined
on the base events (e.g., “A given B”). While it is
in general NP-hard to maintain correct LMSR prices
across an exponentially large outcome space (Chen
et al., 2008), limiting the consensus distribution to a
factored representation of the joint distribution pro-
vides a tractable way to achieve the expressiveness of a
combinatorial market. Sun, et al. (2012) showed how
adapt the junction tree algorithm to jointly manage
each user’s assets along with a market consensus prob-
ability distribution for a combinatorial prediction mar-
ket. Our probability and asset management approach
has been implemented in a combinatorial prediction
market for forecasting geopolitical events (Berea et al.,
2013).

3 KELLY RULE AUTO-TRADER

Unlike financial or commodities markets, where finan-
cial gain or loss is the primary purpose, the aim of a
prediction market is to form consensus forecasts from
a group of users for events of interest. A successful
prediction market depends on participants who are
knowledgeable about and interested in the events in
the market. However, lack of experience with or inter-
est in the management of assets can be a significant
barrier to participation for some forecasters. Find-
ing a way to engage such content-knowledgeable but
market-challenged forecasters could significantly im-
prove the performance of a prediction market. Thus,
there is a need for a tool to translate beliefs of forecast-
ers into market trades that e�ciently allocate assets
according to the forecaster’s beliefs.

Fortunately, just such a tool is available from the fi-
nance literature. A firmly established result is that we
should expect financial markets in the long run to be
dominated by investment funds which follow a ”Kelly
Rule” of investing. Such a strategy invests in each

category of assets in proportion to its expected future
financial value (Evstigneev et al., 2006; Lensberg and
Schenk-Hoppé, 2007; Amir et al., 2001). That is, a
Kelly Rule fund that expects real estate to be 20% of
distant future wealth should invest 20% of its hold-
ings in real estate. In our context this is equivalent to
maximizing an expected log asset holdings, as shown
below.

3.1 OPTIMAL ASSET ALLOCATION

The Kelly rule (Kelly, 1956) determines the best pro-
portion of a user’s assets to invest in order to achieve
the maximum asset growth rate. We briefly review
how the Kelly rule works in a simple binary lottery,
where a loss means losing one’s investment and a win
means gaining the amount bet times the payo↵ odds.
Suppose an investor starts with assets y0; the return is
z for a unit bet; and each investment is a fixed percent-
age c of the user’s current assets. After each lottery,
the user’s assets are multiplied by (1 + zc) in case of
a win and (1 � c) in case of a loss. This yields an
expected exponential growth rate of

g(c) = E


log(

y

n

y0
)

1
n

�

= E


w

n

log(1 + zc) +
l

n

log(1� c)

� (1)

where n is the number of trades the user has made; w
is the number of times the user has won; and l is the
number of times the user has lost. As n approaches
infinity, Eq. 1 becomes

lim
n!+1

E


log(

y

n

y0
)

1
n

�

= p log(1 + zc) + (1� p) log(1� c)

(2)

Now, suppose there are n possible outcomes {z
i

, i =
1, · · · , n}; the user’s probability for outcome z

i

is h

i

;
and the user’s current assets if z

i

occurs are a

i

. The
current market distribution is {p

i

, i = 1, · · · , n}, and
the user is contemplating a set of edits that will change
the distribution to x

i

, i = 1, · · · , n. Given these ed-
its, the user’s assets if outcome z

i

occurs will be
log(a

i

+ b log2(
xi
pi
)). The maximum asset growth rate

is obtained by solving the following optimization prob-
lem:

max
x

NX

i=1


h

i

⇥ log(a
i

+ b log2(
x

i

p

i

))

�
(3)

subject to
NX

i=1

(x
i

) = 1

0 < x

i

< 1, 8i



and
a

i

+ b log2(
x

i

p

i

) >= 0.

where i is the global joint state.

3.2 APPROXIMATELY OPTIMAL
ALLOCATION

It is straightforward to define the optimization shown
in Equation (3) for a joint probability space. How-
ever, as noted above, representing the full joint space
is in general intractable. We therefore consider the
problem in which the user’s edits are further con-
strained to structure-preserving edits, which respect
the underlying factored representation, ensuring com-
putational tractability (if probabilistic inference itself
is tractable).

The objective function in Equation (3) is the expected
updated asset w.r.t. the user’s beliefs {h

i

} over the
entire joint space. It is desirable to decompose the op-
timization according to the cliques in the junction tree
of the graphical model. However, this is non-trivial
because of the logarithm. If edits are structure pre-
serving, assets decompose additively (Sun et al., 2012)
as:

a

i

=
X

c2C
a

c

�
X

s2S
a

s

, (4)

where C is the set of cliques and S is the set of sep-
arators in the junction tree. Therefore (Cowell et al.,
1999), computation of expected assets can be decom-
posed via a local propagation algorithm. However, the
logarithmic transformation log(a

i

+ b log2(
xi
pi
)) is not

additively separable, and no local propagation algo-
rithm exists for computing the expected utility.

We therefore seek a local approximate propagation al-
gorithm. It is often reasonable to assume that a user
has beliefs on only a few of the variables in the mar-
ket. If all the edited variables are confined to a single
clique c

j

, we know

x

i

p

i

=
x

i

cj

p

i

cj

.

One approximation approach is to initialize the user’s
asset tables {a

c

, c 2 C} and {a
s

, s 2 S} with all zeros,
and keep a separate cash account containing the user’s
assets prior to any trades. Each single trade is confined
to a single clique. At the time of the trade, we move
the cash amount into the asset table into the clique the
user is editing. We then solve the optimization prob-
lem 3 for the single clique of interest. The user invests
the optimal amount. We then find the minimum post-
trade assets for the clique of interest. Because of the
logarithmic utility, this amount will be greater than

zero. We then subtract this positive amount from the
clique asset table and add it back to the cash account.
We then move to another clique and make the optimal
edit there in the same way.

We call this process local cash-asset management. This
process iteratively moves all cash into a clique, finds
the optimal edit confined to that clique, and then
moves the maximal amount back to cash while en-
suring that all entries in the clique asset table are
non-negative. This process proceeds through all the
cliques, and increases the expected utility at each step.
Local cash-asset management always leaves all separa-
tors with zero assets, thus removing the need to man-
age separators. Furthermore, the global asset compu-
tation is simplified to be the sum of all clique assets.

The separately maintained cash amount is guaranteed
to be less than or equal to the global minimum assets
as computed by the algorithm of (Sun et al., 2012).
Thus, this approach is a conservative strategy, improv-
ing the user’s expected utility but is not guaranteed to
reach the maximum expected utility.

4 NUMERICAL SIMULATION

We implemented the Kelly Auto-Trader in MATLAB
with an open-source nonlinear optimization solver
called IPOPT (Wächter and Biegler, 2006).

4.1 EXPERIMENT DESIGN

To test market performance with the Kelly auto-
trader, we simulated a market over a 37-node network
whose structure matches ALARM (Beinlich et al.,
1989). The ALARM network (see Figure 1) is often
used as a benchmark for graphical model algorithms,
and is substantial enough to provide a reasonable test
of our approach. The approach itself is limited only
by the e�ciency of the nonlinear solver.
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Figure 1: ALARM

ALARM has 27 cliques in its junction tree, among
which the biggest clique has 5 variables and table size
of 108.

To ensure consistency of beliefs across cliques, we use
the following procedure to generate a simulated user’s
beliefs:

1. Choose n cliques to have beliefs, usually about
1/3 of the total number of cliques;

2. Proceeding sequentially for each of the chosen
cliques, generate its random belief by a random
walk, simulating an e�cient market. Update be-
liefs on the clique and propagate to other cliques
using the junction tree algorithm. This procedure
gives n junction tree propagations in total.

3. After all propagations, take the potentials on the
chosen cliques as the user’s final beliefs.

We simulate market participation using three types of
traders.

Type 1: EVmaxer invests all of her cash in the market
to achieve the maximum asset gain. Formally, EV-
maxer solves the following optimization to find the
best edit x with her beliefs h,

max
x

NX

i=1


h

i

⇥ b log2(
x

i

p

i

)

�
(5)

subject to
NX

i=1

(x
i

) = 1

0 < x

i

< 1, 8i

and
a

i

+ b log2(
x

i

p

i

) >= 0.

where i is the global joint state. EVmaxer can su↵er
catastrophic losses.

Type 2: Kelly-trader is risk-averse and theoretically
has the best growth rate in long run. Kelly-trader
uses Equation 3 to find the best edit at each trade
opportunity.

Type 3: Noiser trades randomly. In any market, we
expect a number of noisy traders who have less knowl-
edge than other traders. We simulated Noiser’s be-
havior by moving the current market distribution by
random walk of white noise with 15% deviation.

At each trade step, we determine the trader type by
taking a random draw from a distribution on the pro-
portion of trader types. Assuming both EVmaxer and
Kelly-trader know the pre-generated beliefs, we allow
them to determine their optimal edits according to
their respective objective functions. They make their
edits and the market distribution is updated. Ed-
its continue in this way until interrupted by a ques-
tion is resolved – that is, its value becomes known to
all participants, and all trades depending on the re-
solved question are paid o↵ by the market maker. The
inter-arrival time for question resolutions is modeled
by an exponential distribution with mean µ

t

. When
resolving, we track the min-asset and max-asset for
EVmaxer and Kelly-traders to measure their perfor-
mance. Further, after resolving a question, we add
a new question back to the model at the same place
where the resolved question was located in the net-
work. Finally, after a certain number of trades, we
resolve all questions one by one based on their proba-
bilities. The final assets for di↵erent types of users are
then calculated and compared.

There are some free parameters in the simulation set-
ting, such as the user’s initial assets, the market scal-
ing parameter b, the proportions of di↵erent types of
traders, etc. The following are the parameter values
for a typical simulation run, with explanation of how
to choose appropriate values:

• Initial assets S = 20 – the small starting assets of
20 will show how EVmaxer goes broke because of
her aggressive trading, and how the Kelly-trader
is able to grow her assets from a small starting
point;

• Market scaling parameter b = 1000 – the bigger b,
the less influence each trader has; a large b mimics
a thick market with many traders;

• Number of trades 1000 – to model the concept of
long run e↵ect;

• Mean time between resolutions 30 trades – actual
resolutions are drawn from an exponential inter-



arrival distribution with this mean; 30 trades
provides su�cient opportunities for well-informed
traders to move the market to the correct direc-
tion before resolving questions.

• Market participants are composed of 20%, 20%,
60% of EVmaxer, Kelly-trader, and Noiser re-
spectively. Basically, we expect better accuracy of
the market probability estimation when there are
more Kelly traders, and/or more frequent editing
by Kelly traders.

4.2 RESULTS AND ANALYSIS

For a typical run of 1000 trades, Figure 2 presents the
marginal probabilities of the resolving states (totally
35 resolutions in this run). At each resolution point,
a question was randomly chosen from the market and
resolved based on its marginal distribution at the mo-
ment. Those resolving probabilities are the “ground
truth” values generated by the random walk. Figures
3 and 4 show, in the same simulation run, the perfor-
mance for EVmaxer and Kelly-trader in terms of their
min-asset and max-asset at each resolution point.
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and Kelly-trader
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Figure 4: Max-asset Comparison between EVmaxer
and Kelly-trader

As expected, Figure 3 shows that the Kelly trader
always reserves some assets, while EVmaxer makes
very aggressive bets. Notice in Figure 4 that EV-
maxer went broke twice at the 7th and 12th question
resolution points (we re-initialize EVmaxers’ assets at
bankruptcy to let them continue to trade). Basically,
EVmaxer has a lot bigger volatility while Kelly-trader
grows assets consistently. In the simulation, we re-
initialize the EVmaxer with the starting asset. But
in practice, just one strike will make the EVmaxer
deeply hurt. At the end of this run, we sampled the
market distribution for 1000 times. Using each sam-
ple as the final resolving states for all questions, we
compared the final payo↵ asset for both EVmaxer and



Kelly-trader. Histograms of the final assets are shown
in Figure 5, and 6. As you may notice, Kelly-trader
has very consistent distribution with mean of 58, and
standard deviateion of about 31. But EVmaxer’s final
asset is distributed very sparsely. Most of time (al-
most dominant), EVmaxer will have final asset close
to zero, although its possible maximum value can be
more than 1000.
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Figure 5: Histogram of the final assets for Kelly-trader
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Figure 6: Histogram of the final assets for EVmaxer

5 TAYLOR APPROXIMATION

In this section, we present an alternate approach in
which we approximate the utility function by a second-
order Taylor series, yielding an approximation to the
expected utility in terms of first and second moments

of the utility random variable. We then apply meth-
ods for local computation of moments of real-valued
functions defined on graphical models (Nilsson, 2001;
Cowell et al., 1999) to obtain an approximation to the
expected utility.

5.1 NOTATION AND DEFINITIONS

Let {Z
v

: v 2 V } be a set of finitely many discrete
random variables; let ⌦

v

denote the set of possible
values of Z

v

, and let z

v

denote a typical element of
⌦

v

. For C ⇢ V , we write Z

C

for {Z
v

: v 2 C}, ⌦
C

for the Cartesian product ⇥
c2C

⌦
c

and z

c

for a typical
element of ⌦

C

.

A junction tree T on V is an undirected graph in
which the nodes are labeled with subsets C ⇢ V

called cliques; each arc is labeled with the intersection
S = C \D, called the separator, of the cliques at the
ends of the arc; every v 2 V is in at least one clique;
there is exactly one path between any two cliques, i.e.,
T is a tree; and C \ D is contained in very clique
along the path from C to D. We let C denote the set
of cliques and S denote the set of separators.

We say a real-valued function f on ⌦
V

factorizes on the
junction tree T if there exist non-negative real-valued
functions {h

C

: C 2 C} on ⌦
C

and and {h
D

: D 2 D}
on ⌦

D

such that for all v 2 V :

f(z
V

) =

Q
C2C hC

(z
C

)Q
D2D h

D

(z
D

)
(6)

where z

C

and z

D

denote the components of z
V

corre-
sponding to C and D, respectively, and h

D

(z
D

) = 0
only if there is at least one clique D with D \ C 6= ;
and h

C

(z
C

) = 0. In case h

D

(z
D

) = 0 and h

C

(z
C

) = 0
for D \ C 6= ;, we take h

C

(z
C

)/h
D

(z
D

) to be 0.

We say a function f on ⌦
V

decomposes additively on
the junction tree T if there exist non-negative real-
valued functions {h

C

: C 2 C} on ⌦
C

and and {h
D

:
D 2 D} on ⌦

D

such that for all v 2 V :

f(z
V

) =
X

C2C
h

C

(z
C

)�
X

D2D
h

D

(z
D

) (7)

where z

C

and z

D

denote the components of z
V

cor-
responding to C and D, respectively. The func-
tions h

C

(x
c

) and h

D

(x
D

) in (6) and (7) are called
potentials; the set {h

B

: B 2 C[D} is called a (multi-
plicative or additive, respectively) potential represen-

tation of f .



5.2 ASSETS AND PROBABILITIES

We assume the user’s probability distribution g fac-
torizes according to the junction tree T . We assume
trades are constrained to be structure preserving with
respect to T ; hence, the before-trade market distribu-
tion p and the market distribution x after a structure
preserving trade also factorize according to T . Con-
sequently, as proven in (Sun et al., 2012), the user’s
current assets a(z

V

) decompose additively on T . Fur-
ther, if the user makes a structure-preserving trade to
change p to x, the user’s new assets

y(z
V

) = a(z
V

) + b log
x(z

V

)

p(z
V

)
(8)

decompose additively on T .

The expected assets µ

Y

=
P

zV
g(z

V

)y(z
V

) can be
computed e�ciently by junction tree propagation
(Nilsson, 2001).

We assume the user has a logarithmic utility function

u(z
V

) = log y(z
V

) = log

✓
a(z

V

) + b log
x(z

V

)

p(z
V

)

◆
. (9)

We seek to maximize

EU =
X

zV

q(z
V

) log

✓
a(z

V

) + b log
x(z

V

)

p(z
V

)

◆
(10)

The utility (9) does not decompose additively, and ex-
act computation of the expected utility is intractable.
However, we can approximate the utility by the first-
order Taylor expansion of log y(z

V

) around µ

Y

as:

u(z
V

) ⇡ log y(z
V

) +
(y(z

V

)� µ

Y

)

µ

Y

� (y(z
V

)� µ

Y

)2

2µ2
Y

.

(11)

We therefore wish to optimize

EU ⇡
X

zV

log q(z
V

)

✓
y(z

V

)� (y(z
V

)� µ

Y

)2

2µ2
Y

◆

= logµ
Y

� �

2
Y

2µ2
Y

,

(12)

where �

2
Y

is the variance of Y . The objective func-
tion (12) can be calculated from the first and second
moments of Y . Nilsson (2001) showed how to modify
the standard junction tree propagation algorithm to

compute first and second moments of additively de-
composable functions e�ciently. These results can be
applied to e�cient calculation of the approximate ex-
pected utility (12), as described below.

5.3 PROPAGATING SECOND MOMENTS

The standard junction tree algorithm (Jensen, 2001;
Dawid, 1992; Lauritzen and Spiegelhalter, 1988) oper-
ates on a potential representation {h

B

: B 2 C[D} for
a probability distribution g that factorizes on a junc-
tion tree T . A clique C is said to be eligible to receive
from a neighboring clique D if either C is D’s only
neighbor or D has already received a message from all
its neighbors other than C. Any schedule is allowable
that sends messages along arcs only when the recipient
is eligible to receive from the sender, and that termi-
nates when messages have been sent in both directions
along all arcs in the junction tree.

Passing a message fromD to C has the following e↵ect:

h

0
S

(z
S

) =
X

D\S

h

D

(z
D

), and (13)

h

0
C

(z
C

) = h

C

(z
C

)

✓
h

0
S

(z
S

)

h

S

(z
S

)

◆
(14)

That is, the new separator potential is obtained by
marginalizing the sender’s potential over the variables
not contained in the separator, and the new recipient
clique potential is obtained by multiplying the old re-
cipient potential by the ratio of new to old separator
potentials.

It is clear that message passing preserves the fac-
torization constraint (6). Furthermore, when the al-
gorithm terminates, the new clique and separator
potentials are the marginal distributions g

B

(z
B

) =P
V \B g

V

(z
V

), B 2 C [ S.

Now, suppose in addition to the multiplicative poten-
tial representation for g, we have an additive poten-
tial representation {t

B

: B 2 C [ S} for an addi-
tively decomposable function y on ⌦

V

. We modify
the message-passing algorithm to pass a bivariate mes-
sage along each arc. Now, in addition to the e↵ects on
the multiplicative potential for the probability distri-
bution g, a message from D to C results in the follow-
ing change to the additive potential for y:

t

0
S

(z
S

) =

P
D\S h

D

(z
D

)t
D

(z
D

)
P

D\S h

D

(z
D

)
, and (15)

t

0
C

(z
C

) = t

C

(z
C

) + t

0
S

(z
S

)� t

S

(z
S

) (16)



After the algorithm terminates with messages sent in
both directions along all arcs, the final clique and sep-
arator multiplicative potentials contain the associated
marginal distributions; and the clique and separator
additive potentials contain the conditional expecta-
tion of Y given the clique/separator state µ

Y |B(zB) =P
V \B g

V

(z
V

)y
V

(z
V

)/
P

V \B g

V

(z
V

), B 2 C [ S.

After propagation, finding the first moment of Y is
straightforward: we simply marginalize the additive
potential on any clique or separator:

µ

Y

=
X

B

µ

Y |B(zB) (17)

Recall that after propagation, the multiplicative po-
tentials are the marginal probabilities g

B

(z
B

) and the
multiplicative potentials are the conditional expecta-
tions µ

Y |B(zB) for B 2 C [ S. Nilsson (2001) proved
that the second moment of the additively decompos-
able function Y can be calculated from the post-
propagation additive and multiplicative potentials as
follows:

E[Y 2] =
X

C2C

X

zC

g

C

(z
C

)µ
Y |C(zC)

2

�
X

S2S

X

zS

g

D

(z
S

)µ
Y |S(zS)

2
.

(18)

To see why (18) is correct, note that by definition,
E[Y 2] =

P
zu

g(z
u

)y(z
u

)2. Then:

E[Y 2] =
X

zu

g(z
u

)y(z
u

)2

=
X

zu

g(z
u

)y(z
u

)
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2
.

For a more accurate approximation, we can add addi-
tional terms to the Taylor expansion and apply Cow-

ell’s method (1999, Sec. 6.4.7) for local propagation
of higher moments. In general, we need to propagate
n+ 1 potentials to compute the first n moments of the
distribution of Y .

6 SUMMARY

By any definition, big data requires learners to con-
sider only a portion of the data at a time. The problem
is then to fuse the beliefs of these specialized agents.
We consider a market to be an e↵ective mechanism for
fusing the beliefs of an arbitrary mixture of human ex-
perts and machine learners, by allowing each agent to
concentrate on those areas where they can do the most
good (and therefore earn the most points). However,
agents that are good at learning are not necessarily
good at trading. Our contribution is a general formu-
lation of an agent which will translate a set of beliefs
into optimal or near-optimal trades on a combinato-
rial market that has been represented in factored form
such as a Bayesian network.

It is known from theory and empirical results in evo-
lutionary finance that an informed trader seeking to
maximize her wealth should allocate her assets accord-
ing to the Kelly (1956) rule. This rule is very general,
and applies even to combinatorial markets. However,
it would be intractable to solve on an arbitrary joint
state. We have derived two e�cient ways to calculate
Kelly investments given beliefs specified in a factored
joint distribution – such as a Bayesian network. We
tested the more conservative rule and found that it
has the desired properties: an exponential wealth in-
crease which never goes broke, slightly underperform-
ing an EV-maximizer in the short run, but outper-
forming it in the long run because the EV-maximizer
will go broke.

Our results mean that we can let experts focus on their
beliefs in any e↵ective manner, and let an automated
agent convert those beliefs into trades. This ability
has frequently been requested by participants in the
IARPA ACE geopolitical forecasting tournament, and
we expect to o↵er the feature this autumn in our new
Science & Technology market.

As a reminder, we assume we have a current set of
beliefs from our expert. In practice, we will have to
specify a rate at which expressed beliefs converge to
the market, in the absence of future updates from the
expert, so as not forever to chain our participants with
the ghosts of expired beliefs. In addition, we plan to
extend our results for systems using approximate in-
ference to update the probability distribution.
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